Research Article
BibTex RIS Cite
Year 2024, , 134 - 156, 12.07.2024
https://doi.org/10.24330/ieja.1411161

Abstract

References

  • H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, NJ, 1956.
  • S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc., 97 (1960), 457-473.
  • T. J. Cheatham and D. R. Stone, Flat and projective character modules, Proc. Amer. Math. Soc., 81 (1981), 175-177.
  • J. L. Chen and N. Q. Ding, A note on existence of envelopes and covers, Bull. Austral. Math. Soc., 54 (1996), 383-390.
  • J. L. Chen and N. Q. Ding, On n-coherent rings, Comm. Algebra, 24 (1996), 3211-3216.
  • N. Q. Ding, Y. L. Li and L. X. Mao, J-coherent rings, J. Algebra Appl., 8 (2009), 139-155.
  • D. D. Dobbs, On n-flat modules over a commutative ring, Bull. Austral. Math. Soc., 43 (1991), 491-498.
  • E. E. Enochs, A note on absolutely pure modules, Canad. Math. Bull., 19 (1976), 361-362.
  • E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter & Co., Berlin, 2000.
  • H. Holm and P. Jørgensen, Covers, precovers, and purity, Illinois. J. Math., 52 (2008), 691-703.
  • W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge University Press, Cambridge, 2003.
  • J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York-London, 1979.
  • A. Shamsuddin, n-injective and n-flat modules, Comm. Algebra, 29 (2001), 2039-2050.
  • B. Stenström, Coherent rings and FP-injective modules, J. London. Math. Soc., 2 (1970), 323-329.
  • B. Stenstr¨om, Rings of Quotients, Springer-Verlag, New York-Heidelberg, 1975.
  • R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
  • X. X. Zhang, J. L. Chen and J. Zhang, On (m, n)-injective modules and (m, n)- coherent rings, Algebra Colloq., 12 (2005), 149-160.
  • X. X. Zhang and J. L. Chen, On n-semihereditary and n-coherent rings, Int. Electron. J. Algebra, 1 (2007), 1-10.
  • Z. M. Zhu and Z. S. Tan, On n-semihereditary rings, Sci. Math. Jpn., 62 (2005), 455-459.
  • Z. M. Zhu, I-n-coherent rings, I-n-semihereditary rings, and I-regular rings, Ukrainian Math. J., 66 (2014), 857-883.
  • Z. M. Zhu, I-pure submodules, I-FP-injective modules and I-flat modules, Br. J. Math. Comput. Sci., 8 (2015), 170-188.
  • Z. M. Zhu, Strongly n-coherent rings, Chinese Ann. Math. Ser. A, 38 (2017), 313-326.

Strongly J-n-Coherent rings

Year 2024, , 134 - 156, 12.07.2024
https://doi.org/10.24330/ieja.1411161

Abstract

Let $R$ be a ring and $n$ a fixed positive integer. A right $R$-module $M$ is called strongly $J$-$n$-injective if every $R$-homomorphism from an $n$-generated small submodule of a free right $R$-module $F$ to $M$ extends to a homomorphism of $F$ to $M$; a right $R$-module $V$ is said to be
strongly $J$-$n$-flat, if for every $n$-generated small submodule $T$ of a free left $R$-module $F$, the canonical map $V\otimes T\rightarrow V\otimes F$ is monic; a ring $R$ is called left strongly $J$-$n$-coherent if every $n$-generated small submodule of a free left $R$-module is finitely presented; a ring $R$ is said to be left $J$-$n$-semihereditary if every $n$-generated small left ideal of $R$ is projective. We study strongly $J$-$n$-injective modules, strongly $J$-$n$-flat modules and left strongly $J$-$n$-coherent rings. Using the concepts of strongly $J$-$n$-injectivity and strongly $J$-$n$-flatness of modules, we also present some characterizations of strongly $J$-$n$-coherent rings and $J$-$n$-semihereditary rings.

References

  • H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, NJ, 1956.
  • S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc., 97 (1960), 457-473.
  • T. J. Cheatham and D. R. Stone, Flat and projective character modules, Proc. Amer. Math. Soc., 81 (1981), 175-177.
  • J. L. Chen and N. Q. Ding, A note on existence of envelopes and covers, Bull. Austral. Math. Soc., 54 (1996), 383-390.
  • J. L. Chen and N. Q. Ding, On n-coherent rings, Comm. Algebra, 24 (1996), 3211-3216.
  • N. Q. Ding, Y. L. Li and L. X. Mao, J-coherent rings, J. Algebra Appl., 8 (2009), 139-155.
  • D. D. Dobbs, On n-flat modules over a commutative ring, Bull. Austral. Math. Soc., 43 (1991), 491-498.
  • E. E. Enochs, A note on absolutely pure modules, Canad. Math. Bull., 19 (1976), 361-362.
  • E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter & Co., Berlin, 2000.
  • H. Holm and P. Jørgensen, Covers, precovers, and purity, Illinois. J. Math., 52 (2008), 691-703.
  • W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge University Press, Cambridge, 2003.
  • J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York-London, 1979.
  • A. Shamsuddin, n-injective and n-flat modules, Comm. Algebra, 29 (2001), 2039-2050.
  • B. Stenström, Coherent rings and FP-injective modules, J. London. Math. Soc., 2 (1970), 323-329.
  • B. Stenstr¨om, Rings of Quotients, Springer-Verlag, New York-Heidelberg, 1975.
  • R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
  • X. X. Zhang, J. L. Chen and J. Zhang, On (m, n)-injective modules and (m, n)- coherent rings, Algebra Colloq., 12 (2005), 149-160.
  • X. X. Zhang and J. L. Chen, On n-semihereditary and n-coherent rings, Int. Electron. J. Algebra, 1 (2007), 1-10.
  • Z. M. Zhu and Z. S. Tan, On n-semihereditary rings, Sci. Math. Jpn., 62 (2005), 455-459.
  • Z. M. Zhu, I-n-coherent rings, I-n-semihereditary rings, and I-regular rings, Ukrainian Math. J., 66 (2014), 857-883.
  • Z. M. Zhu, I-pure submodules, I-FP-injective modules and I-flat modules, Br. J. Math. Comput. Sci., 8 (2015), 170-188.
  • Z. M. Zhu, Strongly n-coherent rings, Chinese Ann. Math. Ser. A, 38 (2017), 313-326.
There are 22 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Zhanmin Zhu This is me

Early Pub Date December 28, 2023
Publication Date July 12, 2024
Published in Issue Year 2024

Cite

APA Zhu, Z. (2024). Strongly J-n-Coherent rings. International Electronic Journal of Algebra, 36(36), 134-156. https://doi.org/10.24330/ieja.1411161
AMA Zhu Z. Strongly J-n-Coherent rings. IEJA. July 2024;36(36):134-156. doi:10.24330/ieja.1411161
Chicago Zhu, Zhanmin. “Strongly J-N-Coherent Rings”. International Electronic Journal of Algebra 36, no. 36 (July 2024): 134-56. https://doi.org/10.24330/ieja.1411161.
EndNote Zhu Z (July 1, 2024) Strongly J-n-Coherent rings. International Electronic Journal of Algebra 36 36 134–156.
IEEE Z. Zhu, “Strongly J-n-Coherent rings”, IEJA, vol. 36, no. 36, pp. 134–156, 2024, doi: 10.24330/ieja.1411161.
ISNAD Zhu, Zhanmin. “Strongly J-N-Coherent Rings”. International Electronic Journal of Algebra 36/36 (July 2024), 134-156. https://doi.org/10.24330/ieja.1411161.
JAMA Zhu Z. Strongly J-n-Coherent rings. IEJA. 2024;36:134–156.
MLA Zhu, Zhanmin. “Strongly J-N-Coherent Rings”. International Electronic Journal of Algebra, vol. 36, no. 36, 2024, pp. 134-56, doi:10.24330/ieja.1411161.
Vancouver Zhu Z. Strongly J-n-Coherent rings. IEJA. 2024;36(36):134-56.