Research Article
BibTex RIS Cite
Year 2024, , 194 - 205, 12.07.2024
https://doi.org/10.24330/ieja.1438748

Abstract

References

  • A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc., 64 (1948), 552-593.
  • L. Carini, I. R. Hentzel and G. M. Piacentini Cattaneo, Degree four identities not implied by commutativity, Comm. Algebra, 16(2) (1988), 339-356.
  • I. Correa and I. R. Hentzel, Commutative non associative nil algebras satisfying an identity of degree four, Preprint (2023).
  • M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices II, Duke Math. J., 27 (1960), 21-31.
  • D. P. Jacobs, S. V. Muddana and A. J. Offutt, A computer algebra system for nonassociative identities, Hadronic mechanics and nonpotential interactions, Nova Science Publishers, Inc., Commack, NY, Part 1 (Cedar Falls, IA, 1990) (1992), 185-195.
  • D. P. Jacobs, D. Lee, S. V. Muddana, A. J. Offutt, K. Prabhu and T. Whiteley, Albert's User Guide, Version 3.0., Department of Computer Science, Clemson University, 1996.
  • J. M. Osborn, Commutative non-associative algebras and identities of degree four, Canadian J. Math., 20 (1968), 769-794.
  • C. Rojas-Bruna, Trace forms and ideals on commutative algebras satisfying an identity of degree four, Rocky Mountain J. Math., 43(4) (2013), 1325-1336.
  • R. D. Schafer, An Introduction to Nonassociative Algebras, Pure Appl. Math., 22, Academic Press, New York-London, 1966.

Idempotents and zero divisors in commutative algebras satisfying an identity of degree four

Year 2024, , 194 - 205, 12.07.2024
https://doi.org/10.24330/ieja.1438748

Abstract

We study commutative algebras satisfying the identity
$ ((wx)y)z+((wy)z)x+((wz)x)y-((wy)x)z- ((wx)z)y-((wz)y)x = 0. $ We assume
characteristic of the field $\neq 2,3.$ We prove that given any $\lambda \in F,$ there exists a commutative algebra with idempotent $e,$ which satisfies the identity, and has $\lambda $ as an eigen value of the multiplication operator $L_e$. For algebras with idempotent, the containment relations for the product of the eigen spaces are not as precise as they are for Jordan or power-associative algebras. A great part of this paper is calculating these containment relations.

References

  • A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc., 64 (1948), 552-593.
  • L. Carini, I. R. Hentzel and G. M. Piacentini Cattaneo, Degree four identities not implied by commutativity, Comm. Algebra, 16(2) (1988), 339-356.
  • I. Correa and I. R. Hentzel, Commutative non associative nil algebras satisfying an identity of degree four, Preprint (2023).
  • M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices II, Duke Math. J., 27 (1960), 21-31.
  • D. P. Jacobs, S. V. Muddana and A. J. Offutt, A computer algebra system for nonassociative identities, Hadronic mechanics and nonpotential interactions, Nova Science Publishers, Inc., Commack, NY, Part 1 (Cedar Falls, IA, 1990) (1992), 185-195.
  • D. P. Jacobs, D. Lee, S. V. Muddana, A. J. Offutt, K. Prabhu and T. Whiteley, Albert's User Guide, Version 3.0., Department of Computer Science, Clemson University, 1996.
  • J. M. Osborn, Commutative non-associative algebras and identities of degree four, Canadian J. Math., 20 (1968), 769-794.
  • C. Rojas-Bruna, Trace forms and ideals on commutative algebras satisfying an identity of degree four, Rocky Mountain J. Math., 43(4) (2013), 1325-1336.
  • R. D. Schafer, An Introduction to Nonassociative Algebras, Pure Appl. Math., 22, Academic Press, New York-London, 1966.
There are 9 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Manuel Arenas This is me

Ivan Correa This is me

Irvin Roy Hentzel

Alicia Labra This is me

Early Pub Date February 17, 2024
Publication Date July 12, 2024
Submission Date October 19, 2023
Acceptance Date January 6, 2024
Published in Issue Year 2024

Cite

APA Arenas, M., Correa, I., Hentzel, I. R., Labra, A. (2024). Idempotents and zero divisors in commutative algebras satisfying an identity of degree four. International Electronic Journal of Algebra, 36(36), 194-205. https://doi.org/10.24330/ieja.1438748
AMA Arenas M, Correa I, Hentzel IR, Labra A. Idempotents and zero divisors in commutative algebras satisfying an identity of degree four. IEJA. July 2024;36(36):194-205. doi:10.24330/ieja.1438748
Chicago Arenas, Manuel, Ivan Correa, Irvin Roy Hentzel, and Alicia Labra. “Idempotents and Zero Divisors in Commutative Algebras Satisfying an Identity of Degree Four”. International Electronic Journal of Algebra 36, no. 36 (July 2024): 194-205. https://doi.org/10.24330/ieja.1438748.
EndNote Arenas M, Correa I, Hentzel IR, Labra A (July 1, 2024) Idempotents and zero divisors in commutative algebras satisfying an identity of degree four. International Electronic Journal of Algebra 36 36 194–205.
IEEE M. Arenas, I. Correa, I. R. Hentzel, and A. Labra, “Idempotents and zero divisors in commutative algebras satisfying an identity of degree four”, IEJA, vol. 36, no. 36, pp. 194–205, 2024, doi: 10.24330/ieja.1438748.
ISNAD Arenas, Manuel et al. “Idempotents and Zero Divisors in Commutative Algebras Satisfying an Identity of Degree Four”. International Electronic Journal of Algebra 36/36 (July 2024), 194-205. https://doi.org/10.24330/ieja.1438748.
JAMA Arenas M, Correa I, Hentzel IR, Labra A. Idempotents and zero divisors in commutative algebras satisfying an identity of degree four. IEJA. 2024;36:194–205.
MLA Arenas, Manuel et al. “Idempotents and Zero Divisors in Commutative Algebras Satisfying an Identity of Degree Four”. International Electronic Journal of Algebra, vol. 36, no. 36, 2024, pp. 194-05, doi:10.24330/ieja.1438748.
Vancouver Arenas M, Correa I, Hentzel IR, Labra A. Idempotents and zero divisors in commutative algebras satisfying an identity of degree four. IEJA. 2024;36(36):194-205.