Research Article
BibTex RIS Cite
Year 2024, , 206 - 214, 12.07.2024
https://doi.org/10.24330/ieja.1476690

Abstract

References

  • L. An and Q. Zhang, Finite metahamiltonian p-groups, J. Algebra, 442 (2015), 23-35.
  • V. A. Belonogov, Finite groups with three classes of maximal subgroups, Math. USSR-Sb., 59(1) (1988), 223-236.
  • M. Brescia, M. Ferrara and M. Trombetti, The structure of metahamiltonian groups, Jpn. J. Math., 18(1) (2023), 1-65.
  • L. Cui, W. Meng, J. Lu and W. Zheng, A new criterion for solvability of a finite group by the sum of orders of non-normal subgroups, Colloq. Math., 174(2) (2023), 169-176.
  • T. De Medts and M. Tarnauceanu, Finite groups determined by an inequality of the orders of their subgroups, Bull. Belg. Math. Soc. Simon Stevin, 15(4) (2008), 699-704.
  • R. Dedekind, Ueber Gruppen, deren sammtliche Theiler Normaltheiler sind, Math. Ann., 48 (1897), 548-561.
  • X. Fang and L. An, A classification of finite metahamiltonian p-groups, Commun. Math. Stat., 9(2) (2021), 239-260.
  • M. Garonzi and M. Patassini, Inequalities detecting structural properties of a finite group, Comm. Algebra, 45(2) (2017), 677-687.
  • I. N. Herstein, A remark on finite groups, Proc. Amer. Math. Soc, 9(2) (1958), 255-257.
  • M. Herzog, P. Longobardi and M. Maj, On a criterion for solvability of a finite group, Comm. Algebra, 49(5) (2021), 2234-2240.
  • W. Meng and J. Lu, On the sum of non-cyclic subgroups order in a finite group, Comm. Algebra, 52(3) (2024), 1084-1096.
  • M. Suzuki, Group Theory II, Fundamental Principles of Mathematical Sciences, 248, Springer-Verlag, New York, 1986.
  • M. Tarnauceanu, Finite groups determined by an inequality of the orders of their subgroups II, Comm. Algebra, 45(11) (2017), 4865-4868.
  • M. Tarnauceanu, On the solvability of a finite group by the sum of subgroup orders, Bull. Korean Math. Soc., 57 (2020), 1475-1479.
  • M. Tarnauceanu, On the supersolvability of a finite group by the sum of subgroup orders, J. Algebra Appl., 21 (2022), 2250232 (7 pp).

On the sum of orders of non-cyclic and non-normal subgroups in a finite group

Year 2024, , 206 - 214, 12.07.2024
https://doi.org/10.24330/ieja.1476690

Abstract

Let $G$ be a finite group and $\mathcal{C}(G)$ denote the set of all non-normal non-cyclic subgroups of $G$. In this paper, the function $\delta_c(G) =\frac{1}{|G|}\sum\limits_{H\in\mathcal{C}(G)}|H|$ is introduced. In fact, we prove that, if $\delta_c(G)\leq \frac{10}{3}$, then either $G\cong A_5$, or $G$ is solvable. We also find some examples of finite groups $G$ with $\delta_c(G)\leq \frac{10}{3}$.

References

  • L. An and Q. Zhang, Finite metahamiltonian p-groups, J. Algebra, 442 (2015), 23-35.
  • V. A. Belonogov, Finite groups with three classes of maximal subgroups, Math. USSR-Sb., 59(1) (1988), 223-236.
  • M. Brescia, M. Ferrara and M. Trombetti, The structure of metahamiltonian groups, Jpn. J. Math., 18(1) (2023), 1-65.
  • L. Cui, W. Meng, J. Lu and W. Zheng, A new criterion for solvability of a finite group by the sum of orders of non-normal subgroups, Colloq. Math., 174(2) (2023), 169-176.
  • T. De Medts and M. Tarnauceanu, Finite groups determined by an inequality of the orders of their subgroups, Bull. Belg. Math. Soc. Simon Stevin, 15(4) (2008), 699-704.
  • R. Dedekind, Ueber Gruppen, deren sammtliche Theiler Normaltheiler sind, Math. Ann., 48 (1897), 548-561.
  • X. Fang and L. An, A classification of finite metahamiltonian p-groups, Commun. Math. Stat., 9(2) (2021), 239-260.
  • M. Garonzi and M. Patassini, Inequalities detecting structural properties of a finite group, Comm. Algebra, 45(2) (2017), 677-687.
  • I. N. Herstein, A remark on finite groups, Proc. Amer. Math. Soc, 9(2) (1958), 255-257.
  • M. Herzog, P. Longobardi and M. Maj, On a criterion for solvability of a finite group, Comm. Algebra, 49(5) (2021), 2234-2240.
  • W. Meng and J. Lu, On the sum of non-cyclic subgroups order in a finite group, Comm. Algebra, 52(3) (2024), 1084-1096.
  • M. Suzuki, Group Theory II, Fundamental Principles of Mathematical Sciences, 248, Springer-Verlag, New York, 1986.
  • M. Tarnauceanu, Finite groups determined by an inequality of the orders of their subgroups II, Comm. Algebra, 45(11) (2017), 4865-4868.
  • M. Tarnauceanu, On the solvability of a finite group by the sum of subgroup orders, Bull. Korean Math. Soc., 57 (2020), 1475-1479.
  • M. Tarnauceanu, On the supersolvability of a finite group by the sum of subgroup orders, J. Algebra Appl., 21 (2022), 2250232 (7 pp).
There are 15 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Haowen Chen This is me

Boru Zhang This is me

Wei Meng

Early Pub Date May 2, 2024
Publication Date July 12, 2024
Submission Date January 10, 2024
Acceptance Date February 21, 2024
Published in Issue Year 2024

Cite

APA Chen, H., Zhang, B., & Meng, W. (2024). On the sum of orders of non-cyclic and non-normal subgroups in a finite group. International Electronic Journal of Algebra, 36(36), 206-214. https://doi.org/10.24330/ieja.1476690
AMA Chen H, Zhang B, Meng W. On the sum of orders of non-cyclic and non-normal subgroups in a finite group. IEJA. July 2024;36(36):206-214. doi:10.24330/ieja.1476690
Chicago Chen, Haowen, Boru Zhang, and Wei Meng. “On the Sum of Orders of Non-Cyclic and Non-Normal Subgroups in a Finite Group”. International Electronic Journal of Algebra 36, no. 36 (July 2024): 206-14. https://doi.org/10.24330/ieja.1476690.
EndNote Chen H, Zhang B, Meng W (July 1, 2024) On the sum of orders of non-cyclic and non-normal subgroups in a finite group. International Electronic Journal of Algebra 36 36 206–214.
IEEE H. Chen, B. Zhang, and W. Meng, “On the sum of orders of non-cyclic and non-normal subgroups in a finite group”, IEJA, vol. 36, no. 36, pp. 206–214, 2024, doi: 10.24330/ieja.1476690.
ISNAD Chen, Haowen et al. “On the Sum of Orders of Non-Cyclic and Non-Normal Subgroups in a Finite Group”. International Electronic Journal of Algebra 36/36 (July 2024), 206-214. https://doi.org/10.24330/ieja.1476690.
JAMA Chen H, Zhang B, Meng W. On the sum of orders of non-cyclic and non-normal subgroups in a finite group. IEJA. 2024;36:206–214.
MLA Chen, Haowen et al. “On the Sum of Orders of Non-Cyclic and Non-Normal Subgroups in a Finite Group”. International Electronic Journal of Algebra, vol. 36, no. 36, 2024, pp. 206-14, doi:10.24330/ieja.1476690.
Vancouver Chen H, Zhang B, Meng W. On the sum of orders of non-cyclic and non-normal subgroups in a finite group. IEJA. 2024;36(36):206-14.