K. R. Goodearl and R. B. Wareld, Jr., An Introduction to Noncommuta-
tive Noetherian Rings, London Mathematical Society Student Texts, 16, Cam-
bridge University Press, Cambridge, 1989.
A. V. Jategaonkar, Noetherian bimodules, primary decomposition and Jacob-
son's conjecture, J. Algebra, 71(2) (1981), 379-400.
A. V. Jategaonkar, Solvable Lie algebras, polycyclic-by-nite groups, and bi-
module Krull dimension, Comm. Algebra, 10(1) (1982), 19-69.
A. V. Jategaonkar, Localization in Noetherian Rings, London Mathematical
Society Lecture Note Series, 98, Cambridge University Press, Cambridge, 1986.
K. A. Kosler, On symmetric radicals over fully semiprimary Noetherian rings,
J. Algebra Appl., 2(3) (2003), 351-364.
J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Pure
and Applied Mathematics (New York), A Wiley-Interscience Publication, John
Wiley & Sons, Ltd., Chichester, 1987.
T. Stafford, On the ideals of a Noetherian ring, Trans. Amer. Math. Soc.,
289(1) (1985), 381-392.
[R. Vyas, A homological reformulation of the link condition, J. Algebra, 394
(2013), 223-244.
A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS
K. R. Goodearl and R. B. Wareld, Jr., An Introduction to Noncommuta-
tive Noetherian Rings, London Mathematical Society Student Texts, 16, Cam-
bridge University Press, Cambridge, 1989.
A. V. Jategaonkar, Noetherian bimodules, primary decomposition and Jacob-
son's conjecture, J. Algebra, 71(2) (1981), 379-400.
A. V. Jategaonkar, Solvable Lie algebras, polycyclic-by-nite groups, and bi-
module Krull dimension, Comm. Algebra, 10(1) (1982), 19-69.
A. V. Jategaonkar, Localization in Noetherian Rings, London Mathematical
Society Lecture Note Series, 98, Cambridge University Press, Cambridge, 1986.
K. A. Kosler, On symmetric radicals over fully semiprimary Noetherian rings,
J. Algebra Appl., 2(3) (2003), 351-364.
J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Pure
and Applied Mathematics (New York), A Wiley-Interscience Publication, John
Wiley & Sons, Ltd., Chichester, 1987.
T. Stafford, On the ideals of a Noetherian ring, Trans. Amer. Math. Soc.,
289(1) (1985), 381-392.
[R. Vyas, A homological reformulation of the link condition, J. Algebra, 394
(2013), 223-244.
Kosler, K. A. (2018). A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS. International Electronic Journal of Algebra, 24(24), 12-17. https://doi.org/10.24330/ieja.440130
AMA
Kosler KA. A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS. IEJA. July 2018;24(24):12-17. doi:10.24330/ieja.440130
Chicago
Kosler, Karl A. “A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS”. International Electronic Journal of Algebra 24, no. 24 (July 2018): 12-17. https://doi.org/10.24330/ieja.440130.
EndNote
Kosler KA (July 1, 2018) A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS. International Electronic Journal of Algebra 24 24 12–17.
IEEE
K. A. Kosler, “A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS”, IEJA, vol. 24, no. 24, pp. 12–17, 2018, doi: 10.24330/ieja.440130.
ISNAD
Kosler, Karl A. “A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS”. International Electronic Journal of Algebra 24/24 (July 2018), 12-17. https://doi.org/10.24330/ieja.440130.
JAMA
Kosler KA. A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS. IEJA. 2018;24:12–17.
MLA
Kosler, Karl A. “A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS”. International Electronic Journal of Algebra, vol. 24, no. 24, 2018, pp. 12-17, doi:10.24330/ieja.440130.
Vancouver
Kosler KA. A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS. IEJA. 2018;24(24):12-7.