Research Article
BibTex RIS Cite
Year 2018, , 12 - 17, 05.07.2018
https://doi.org/10.24330/ieja.440130

Abstract

References

  • K. R. Goodearl and R. B. War eld, Jr., An Introduction to Noncommuta- tive Noetherian Rings, London Mathematical Society Student Texts, 16, Cam- bridge University Press, Cambridge, 1989.
  • A. V. Jategaonkar, Noetherian bimodules, primary decomposition and Jacob- son's conjecture, J. Algebra, 71(2) (1981), 379-400.
  • A. V. Jategaonkar, Solvable Lie algebras, polycyclic-by- nite groups, and bi- module Krull dimension, Comm. Algebra, 10(1) (1982), 19-69.
  • A. V. Jategaonkar, Localization in Noetherian Rings, London Mathematical Society Lecture Note Series, 98, Cambridge University Press, Cambridge, 1986.
  • K. A. Kosler, On symmetric radicals over fully semiprimary Noetherian rings, J. Algebra Appl., 2(3) (2003), 351-364.
  • J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1987.
  • T. Stafford, On the ideals of a Noetherian ring, Trans. Amer. Math. Soc., 289(1) (1985), 381-392.
  • [R. Vyas, A homological reformulation of the link condition, J. Algebra, 394 (2013), 223-244.

A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS

Year 2018, , 12 - 17, 05.07.2018
https://doi.org/10.24330/ieja.440130

Abstract

It is shown that linked prime ideals in certain fully semiprimary Noetherian ring are incomparable.

References

  • K. R. Goodearl and R. B. War eld, Jr., An Introduction to Noncommuta- tive Noetherian Rings, London Mathematical Society Student Texts, 16, Cam- bridge University Press, Cambridge, 1989.
  • A. V. Jategaonkar, Noetherian bimodules, primary decomposition and Jacob- son's conjecture, J. Algebra, 71(2) (1981), 379-400.
  • A. V. Jategaonkar, Solvable Lie algebras, polycyclic-by- nite groups, and bi- module Krull dimension, Comm. Algebra, 10(1) (1982), 19-69.
  • A. V. Jategaonkar, Localization in Noetherian Rings, London Mathematical Society Lecture Note Series, 98, Cambridge University Press, Cambridge, 1986.
  • K. A. Kosler, On symmetric radicals over fully semiprimary Noetherian rings, J. Algebra Appl., 2(3) (2003), 351-364.
  • J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1987.
  • T. Stafford, On the ideals of a Noetherian ring, Trans. Amer. Math. Soc., 289(1) (1985), 381-392.
  • [R. Vyas, A homological reformulation of the link condition, J. Algebra, 394 (2013), 223-244.
There are 8 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Karl A. Kosler This is me

Publication Date July 5, 2018
Published in Issue Year 2018

Cite

APA Kosler, K. A. (2018). A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS. International Electronic Journal of Algebra, 24(24), 12-17. https://doi.org/10.24330/ieja.440130
AMA Kosler KA. A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS. IEJA. July 2018;24(24):12-17. doi:10.24330/ieja.440130
Chicago Kosler, Karl A. “A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS”. International Electronic Journal of Algebra 24, no. 24 (July 2018): 12-17. https://doi.org/10.24330/ieja.440130.
EndNote Kosler KA (July 1, 2018) A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS. International Electronic Journal of Algebra 24 24 12–17.
IEEE K. A. Kosler, “A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS”, IEJA, vol. 24, no. 24, pp. 12–17, 2018, doi: 10.24330/ieja.440130.
ISNAD Kosler, Karl A. “A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS”. International Electronic Journal of Algebra 24/24 (July 2018), 12-17. https://doi.org/10.24330/ieja.440130.
JAMA Kosler KA. A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS. IEJA. 2018;24:12–17.
MLA Kosler, Karl A. “A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS”. International Electronic Journal of Algebra, vol. 24, no. 24, 2018, pp. 12-17, doi:10.24330/ieja.440130.
Vancouver Kosler KA. A RESULT ON THE INCOMPARABILITY OF LINKED PRIME IDEALS. IEJA. 2018;24(24):12-7.