Research Article
BibTex RIS Cite
Year 2019, , 12 - 34, 08.01.2019
https://doi.org/10.24330/ieja.504101

Abstract

References

  • M. Aguiar, On the associative analog of Lie bialgebras, J. Algebra, 244(2) (2001), 492-532.
  • F. V.Atkinson, Some aspects of Baxter's functional equation, J. Math. Anal. Appl., 7 (1963), 1-30.
  • C. Bai, O. Bellier, L. Guo and X. Ni, Splitting of operations, Manin products, and Rota-Baxter operators, Int. Math. Res. Not. IMRN, (2013) 3 (2013), 485- 524.
  • C. Bai, L. Guo and X. Ni, Nonabelian generalized Lax pairs, the classical Yang- Baxter equation and PostLie algebras, Comm. Math. Phys., 297(2) (2010), 553-596.
  • C. Bai, L. Guo and X. Ni, Generalizations of the classical Yang-Baxter equation and O-operators, J. Math. Phys., 52(6) (2011), 063515 (17 pp).
  • C. Bai, L. Guo and X. Ni, O-operators on associative algebras and associative Yang-Baxter equations, Paci c J. Math., 256(2) (2012), 257-289.
  • C. Bai, L. Guo and X. Ni, O-operators on associative algebras, associative Yang-Baxter equations and dendriform algebras, In \Quantized Algebra and Physics", Nankai Ser. Pure Appl. Math. Theoret. Phys., 8, World Sci. Publ., Hackensack, NJ, (2012), 10-51.
  • G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Paci c J. Math., 10 (1960), 731-742.
  • M. Bordemann, Generalized Lax pairs, the modi ed classical Yang-Baxter equa- tion, and ane geometry of Lie groups, Comm. Math. Phys., 135(1) (1990), 201-216.
  • P. Cartier, On the structure of free Baxter algebras, Advances in Math., 9 (1972), 253-265.
  • A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommuta- tive geometry, Comm. Math. Phys., 199(1) (1998), 203-242.
  • K. Ebrihimi-Fard, Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys., 61(2) (2002), 139-147.
  • K. Ebrahimi-Fard and L. Guo, Quasi-shues, mixable shues and Hopf alge- bras, J. Algebraic Combin., 24(1) (2006), 83-101.
  • K. Ebrahimi-Fard and L. Guo, Rota-Baxter algebras and dendriform algebras, J. Pure Appl. Algebra, 212(2) (2008), 320-339.
  • X. Gao, L. Guo and T. Zhang, Bialgebra and Hopf algebra structures on free Rota-Baxter algebra, arXiv:1604.03238.
  • L. Guo, An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics, 4, International Press, Somerville, MA; Higher Education Press, Beijing, 2012.
  • L. Guo and W. Keigher, Baxter algebras and shue products, Adv. Math., 150(1) (2000), 117-149.
  • L. Guo and W. Y. Sit Enumeration and generating functions of Rota-Baxter words, Math. Comput. Sci., 4(2-3) (2010), 313-337.
  • R. Jian and J. Zhang, Rota-Baxter coalgebras, arXiv:1409.3052. [20] Y. Kosmann-Schwarzbach, Lie bialgebras, Poisson Lie groups and dressing transformations, in \Integrability of nonlinear systems", Lecture Notes in Phys., 495, Springer, Berlin, (1997), 104-170.
  • T. Ma and L. Liu, Rota-Baxter coalgebras and Rota-Baxter bialgebras, Linear Multilinear Algebra, 64(5) (2016), 968-979.
  • A. Makhlouf and D. Yau, Rota-Baxter Hom-Lie-admissible algebras, Comm. Algebra, 42(3) (2014), 1231-1257.
  • D. Manchon, Hoft algebras, from basics to applications to renormalization, Comptes-rendus des Rencontres mathematiques de Glanon, 2001.
  • M. Marcolli and X. Ni, Rota-Baxter algebras, singular hypersurfaces, and renormalization on Kausz compacti cations, J. Singul., 15 (2016), 80-117.
  • J. Pei, C. Bai and L. Guo, Splitting of operads and Rota-Baxter operators on operads, Appl. Categ. Structures, 25(4) (2017), 505-538.
  • G.-C. Rota, Baxter algebras and combinatorial identities I, II, Bull. Amer. Math. Soc., 75 (1969), 325-329, 330-334.
  • M. A. Semenov-Tian-Shansky, What is a classical R-matrix? Functional Anal. Appl. 17(4) (1983), 259-272.
  • T. Zhang, X. Gao and L. Guo, Hopf algebras of rooted forests, cocyles, and free Rota-Baxter algebras, J. Math. Phys., 57(10) (2016), 101701 (16 pp).
  • X. Zhang, X. Gao and L. Guo, Commutative modi ed Rota-Baxter algebras, shuffe products and Hopf algebras, Bull. Malays. Math. Sci. Soc., (2018), https://doi.org/10.1007/s40840-018-0648-3.

FREE MODIFIED ROTA-BAXTER ALGEBRAS AND HOPF ALGEBRAS

Year 2019, , 12 - 34, 08.01.2019
https://doi.org/10.24330/ieja.504101

Abstract

The notion of a modi ed Rota-Baxter algebra comes from the
combination of those of a Rota-Baxter algebra and a modi ed Yang-Baxter
equation. In this paper, we rst construct free modi ed Rota-Baxter algebras.
We then equip a free modi ed Rota-Baxter algebra with a bialgebra structure
by a cocycle construction. Under the assumption that the generating algebra
is a connected bialgebra, we further equip the free modi ed Rota-Baxter alge-
bra with a Hopf algebra structure.

References

  • M. Aguiar, On the associative analog of Lie bialgebras, J. Algebra, 244(2) (2001), 492-532.
  • F. V.Atkinson, Some aspects of Baxter's functional equation, J. Math. Anal. Appl., 7 (1963), 1-30.
  • C. Bai, O. Bellier, L. Guo and X. Ni, Splitting of operations, Manin products, and Rota-Baxter operators, Int. Math. Res. Not. IMRN, (2013) 3 (2013), 485- 524.
  • C. Bai, L. Guo and X. Ni, Nonabelian generalized Lax pairs, the classical Yang- Baxter equation and PostLie algebras, Comm. Math. Phys., 297(2) (2010), 553-596.
  • C. Bai, L. Guo and X. Ni, Generalizations of the classical Yang-Baxter equation and O-operators, J. Math. Phys., 52(6) (2011), 063515 (17 pp).
  • C. Bai, L. Guo and X. Ni, O-operators on associative algebras and associative Yang-Baxter equations, Paci c J. Math., 256(2) (2012), 257-289.
  • C. Bai, L. Guo and X. Ni, O-operators on associative algebras, associative Yang-Baxter equations and dendriform algebras, In \Quantized Algebra and Physics", Nankai Ser. Pure Appl. Math. Theoret. Phys., 8, World Sci. Publ., Hackensack, NJ, (2012), 10-51.
  • G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Paci c J. Math., 10 (1960), 731-742.
  • M. Bordemann, Generalized Lax pairs, the modi ed classical Yang-Baxter equa- tion, and ane geometry of Lie groups, Comm. Math. Phys., 135(1) (1990), 201-216.
  • P. Cartier, On the structure of free Baxter algebras, Advances in Math., 9 (1972), 253-265.
  • A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommuta- tive geometry, Comm. Math. Phys., 199(1) (1998), 203-242.
  • K. Ebrihimi-Fard, Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys., 61(2) (2002), 139-147.
  • K. Ebrahimi-Fard and L. Guo, Quasi-shues, mixable shues and Hopf alge- bras, J. Algebraic Combin., 24(1) (2006), 83-101.
  • K. Ebrahimi-Fard and L. Guo, Rota-Baxter algebras and dendriform algebras, J. Pure Appl. Algebra, 212(2) (2008), 320-339.
  • X. Gao, L. Guo and T. Zhang, Bialgebra and Hopf algebra structures on free Rota-Baxter algebra, arXiv:1604.03238.
  • L. Guo, An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics, 4, International Press, Somerville, MA; Higher Education Press, Beijing, 2012.
  • L. Guo and W. Keigher, Baxter algebras and shue products, Adv. Math., 150(1) (2000), 117-149.
  • L. Guo and W. Y. Sit Enumeration and generating functions of Rota-Baxter words, Math. Comput. Sci., 4(2-3) (2010), 313-337.
  • R. Jian and J. Zhang, Rota-Baxter coalgebras, arXiv:1409.3052. [20] Y. Kosmann-Schwarzbach, Lie bialgebras, Poisson Lie groups and dressing transformations, in \Integrability of nonlinear systems", Lecture Notes in Phys., 495, Springer, Berlin, (1997), 104-170.
  • T. Ma and L. Liu, Rota-Baxter coalgebras and Rota-Baxter bialgebras, Linear Multilinear Algebra, 64(5) (2016), 968-979.
  • A. Makhlouf and D. Yau, Rota-Baxter Hom-Lie-admissible algebras, Comm. Algebra, 42(3) (2014), 1231-1257.
  • D. Manchon, Hoft algebras, from basics to applications to renormalization, Comptes-rendus des Rencontres mathematiques de Glanon, 2001.
  • M. Marcolli and X. Ni, Rota-Baxter algebras, singular hypersurfaces, and renormalization on Kausz compacti cations, J. Singul., 15 (2016), 80-117.
  • J. Pei, C. Bai and L. Guo, Splitting of operads and Rota-Baxter operators on operads, Appl. Categ. Structures, 25(4) (2017), 505-538.
  • G.-C. Rota, Baxter algebras and combinatorial identities I, II, Bull. Amer. Math. Soc., 75 (1969), 325-329, 330-334.
  • M. A. Semenov-Tian-Shansky, What is a classical R-matrix? Functional Anal. Appl. 17(4) (1983), 259-272.
  • T. Zhang, X. Gao and L. Guo, Hopf algebras of rooted forests, cocyles, and free Rota-Baxter algebras, J. Math. Phys., 57(10) (2016), 101701 (16 pp).
  • X. Zhang, X. Gao and L. Guo, Commutative modi ed Rota-Baxter algebras, shuffe products and Hopf algebras, Bull. Malays. Math. Sci. Soc., (2018), https://doi.org/10.1007/s40840-018-0648-3.
There are 28 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Xigou Zhang This is me

Xing Gao This is me

Li Guo This is me

Publication Date January 8, 2019
Published in Issue Year 2019

Cite

APA Zhang, X., Gao, X., & Guo, L. (2019). FREE MODIFIED ROTA-BAXTER ALGEBRAS AND HOPF ALGEBRAS. International Electronic Journal of Algebra, 25(25), 12-34. https://doi.org/10.24330/ieja.504101
AMA Zhang X, Gao X, Guo L. FREE MODIFIED ROTA-BAXTER ALGEBRAS AND HOPF ALGEBRAS. IEJA. January 2019;25(25):12-34. doi:10.24330/ieja.504101
Chicago Zhang, Xigou, Xing Gao, and Li Guo. “FREE MODIFIED ROTA-BAXTER ALGEBRAS AND HOPF ALGEBRAS”. International Electronic Journal of Algebra 25, no. 25 (January 2019): 12-34. https://doi.org/10.24330/ieja.504101.
EndNote Zhang X, Gao X, Guo L (January 1, 2019) FREE MODIFIED ROTA-BAXTER ALGEBRAS AND HOPF ALGEBRAS. International Electronic Journal of Algebra 25 25 12–34.
IEEE X. Zhang, X. Gao, and L. Guo, “FREE MODIFIED ROTA-BAXTER ALGEBRAS AND HOPF ALGEBRAS”, IEJA, vol. 25, no. 25, pp. 12–34, 2019, doi: 10.24330/ieja.504101.
ISNAD Zhang, Xigou et al. “FREE MODIFIED ROTA-BAXTER ALGEBRAS AND HOPF ALGEBRAS”. International Electronic Journal of Algebra 25/25 (January 2019), 12-34. https://doi.org/10.24330/ieja.504101.
JAMA Zhang X, Gao X, Guo L. FREE MODIFIED ROTA-BAXTER ALGEBRAS AND HOPF ALGEBRAS. IEJA. 2019;25:12–34.
MLA Zhang, Xigou et al. “FREE MODIFIED ROTA-BAXTER ALGEBRAS AND HOPF ALGEBRAS”. International Electronic Journal of Algebra, vol. 25, no. 25, 2019, pp. 12-34, doi:10.24330/ieja.504101.
Vancouver Zhang X, Gao X, Guo L. FREE MODIFIED ROTA-BAXTER ALGEBRAS AND HOPF ALGEBRAS. IEJA. 2019;25(25):12-34.