Research Article
BibTex RIS Cite
Year 2019, , 212 - 223, 08.01.2019
https://doi.org/10.24330/ieja.504155

Abstract

References

  • A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75(3) (2007), 417-429.
  • A. M. Buhphang and M. B. Rege, Semi-commutative modules and Armendariz modules, Arab J. Math. Sci., 8(1) (2002), 53-65.
  • A. Y. Darani and F. Soheilnia, 2-Absorbing and weakly 2-absorbing submodules, Thai J. Math., 9(3) (2011), 577-584.
  • J. Dauns, Prime modules, J. Reine Angew. Math., 298 (1978), 156-181.
  • N. J. Groenewald and D. Ssevviiri, Completely prime submodules, Int. Electron. J. Algebra, 13 (2013), 1-14.
  • Sh. Payrovi and S. Babaei, On 2-absorbing submodules, Algebra Colloq., 19 (2012) 913-920.
  • Sh. Payrovi and S. Babaei, On the 2-absorbing submodules, Iran. J. Math. Sci. Inform., 10(1) (2015), 131-137.

ON 2-ABSORBING MODULES OVER NONCOMMUTATIVE RINGS

Year 2019, , 212 - 223, 08.01.2019
https://doi.org/10.24330/ieja.504155

Abstract

Let R be a noncommutative ring with identity. We de ne the
notion of a 2-absorbing submodule and show that if the ring is commutative
then the notion is the same as the original de nition of that of A. Darani and
F. Soheilnia. We give an example to show that in general these two notions
are di erent. Many properties of 2-absorbing submodules are proved which
are similar to the results for commutative rings.

References

  • A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75(3) (2007), 417-429.
  • A. M. Buhphang and M. B. Rege, Semi-commutative modules and Armendariz modules, Arab J. Math. Sci., 8(1) (2002), 53-65.
  • A. Y. Darani and F. Soheilnia, 2-Absorbing and weakly 2-absorbing submodules, Thai J. Math., 9(3) (2011), 577-584.
  • J. Dauns, Prime modules, J. Reine Angew. Math., 298 (1978), 156-181.
  • N. J. Groenewald and D. Ssevviiri, Completely prime submodules, Int. Electron. J. Algebra, 13 (2013), 1-14.
  • Sh. Payrovi and S. Babaei, On 2-absorbing submodules, Algebra Colloq., 19 (2012) 913-920.
  • Sh. Payrovi and S. Babaei, On the 2-absorbing submodules, Iran. J. Math. Sci. Inform., 10(1) (2015), 131-137.
There are 7 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

N. J. Groenewald This is me

Bac T. Nguyen This is me

Publication Date January 8, 2019
Published in Issue Year 2019

Cite

APA Groenewald, N. J., & Nguyen, B. T. (2019). ON 2-ABSORBING MODULES OVER NONCOMMUTATIVE RINGS. International Electronic Journal of Algebra, 25(25), 212-223. https://doi.org/10.24330/ieja.504155
AMA Groenewald NJ, Nguyen BT. ON 2-ABSORBING MODULES OVER NONCOMMUTATIVE RINGS. IEJA. January 2019;25(25):212-223. doi:10.24330/ieja.504155
Chicago Groenewald, N. J., and Bac T. Nguyen. “ON 2-ABSORBING MODULES OVER NONCOMMUTATIVE RINGS”. International Electronic Journal of Algebra 25, no. 25 (January 2019): 212-23. https://doi.org/10.24330/ieja.504155.
EndNote Groenewald NJ, Nguyen BT (January 1, 2019) ON 2-ABSORBING MODULES OVER NONCOMMUTATIVE RINGS. International Electronic Journal of Algebra 25 25 212–223.
IEEE N. J. Groenewald and B. T. Nguyen, “ON 2-ABSORBING MODULES OVER NONCOMMUTATIVE RINGS”, IEJA, vol. 25, no. 25, pp. 212–223, 2019, doi: 10.24330/ieja.504155.
ISNAD Groenewald, N. J. - Nguyen, Bac T. “ON 2-ABSORBING MODULES OVER NONCOMMUTATIVE RINGS”. International Electronic Journal of Algebra 25/25 (January 2019), 212-223. https://doi.org/10.24330/ieja.504155.
JAMA Groenewald NJ, Nguyen BT. ON 2-ABSORBING MODULES OVER NONCOMMUTATIVE RINGS. IEJA. 2019;25:212–223.
MLA Groenewald, N. J. and Bac T. Nguyen. “ON 2-ABSORBING MODULES OVER NONCOMMUTATIVE RINGS”. International Electronic Journal of Algebra, vol. 25, no. 25, 2019, pp. 212-23, doi:10.24330/ieja.504155.
Vancouver Groenewald NJ, Nguyen BT. ON 2-ABSORBING MODULES OVER NONCOMMUTATIVE RINGS. IEJA. 2019;25(25):212-23.