Research Article
BibTex RIS Cite

GROUP PARTITIONS VIA COMMUTATIVITY

Year 2019, , 224 - 231, 08.01.2019
https://doi.org/10.24330/ieja.504159

Abstract

Let $G$ be a nonabelian group, $A\subset G$ an abelian subgroup and $n\geqslant 2$ an integer.
We say that $G$ has an $n$-abelian partition with respect to $A$,
if there exists a partition of $G$ into  $A$ and $n$ disjoint commuting
subsets $A_1,  A_2,\ldots, A_n$ of $G$,  such that $|A_i|>1$ for each $i=1, 2, \ldots, n$.
We classify all nonabelian groups, up to isomorphism,  which have an $n$-abelian
partition, for $n=2$ and $3$.

References

  • S. M. Belcastro and G. J. Sherman, Counting centralizers in fi nite groups, Math. Mag., 67(5) (1994), 366-374.
  • E. A. Bertram, Some applications of graph theory to finite groups, Discrete Math., 44(1) (1983), 31-43.
  • A. Brandstadt, Partitions of graphs into one or two independent sets and cliques, Discrete Math., 152(1-3) (1996), 47-54.
  • J. R. Britnell and N. Gill, Perfect commuting graphs, J. Group Theory, 20(1) (2017), 71-102.
  • A. K. Das and D. Nongsiang, On the genus of the commuting graphs of finite non-abelian groups, Int. Electron. J. Algebra, 19 (2016), 91-109.
  • S. Foldes and P. L. Hammer, Split graphs, Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977), 311-315.
  • N. Ito, On fi nite groups with given conjugate types I, Nagoya Math. J., 6 (1953), 17-28.
  • A. Mahmoudifar and A. R. Moghaddamfar, Commuting graphs of groups and related numerical parameters, Comm. Algebra, 45(7) (2017), 3159-3165.
  • L. Pyber, The number of pairwise noncommuting elements and the index of the centre in a fi nite group, J. London Math. Soc., 35(2) (1987), 287-295.
  • G. Scorza, I gruppi che possono pensarsi come somme di tre loro sottogruppi, Boll. Unione Mat. Ital., (1926), 216-218.
Year 2019, , 224 - 231, 08.01.2019
https://doi.org/10.24330/ieja.504159

Abstract

References

  • S. M. Belcastro and G. J. Sherman, Counting centralizers in fi nite groups, Math. Mag., 67(5) (1994), 366-374.
  • E. A. Bertram, Some applications of graph theory to finite groups, Discrete Math., 44(1) (1983), 31-43.
  • A. Brandstadt, Partitions of graphs into one or two independent sets and cliques, Discrete Math., 152(1-3) (1996), 47-54.
  • J. R. Britnell and N. Gill, Perfect commuting graphs, J. Group Theory, 20(1) (2017), 71-102.
  • A. K. Das and D. Nongsiang, On the genus of the commuting graphs of finite non-abelian groups, Int. Electron. J. Algebra, 19 (2016), 91-109.
  • S. Foldes and P. L. Hammer, Split graphs, Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977), 311-315.
  • N. Ito, On fi nite groups with given conjugate types I, Nagoya Math. J., 6 (1953), 17-28.
  • A. Mahmoudifar and A. R. Moghaddamfar, Commuting graphs of groups and related numerical parameters, Comm. Algebra, 45(7) (2017), 3159-3165.
  • L. Pyber, The number of pairwise noncommuting elements and the index of the centre in a fi nite group, J. London Math. Soc., 35(2) (1987), 287-295.
  • G. Scorza, I gruppi che possono pensarsi come somme di tre loro sottogruppi, Boll. Unione Mat. Ital., (1926), 216-218.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

A. Mahmoudifar This is me

A. R. Moghaddamfar This is me

F. Salehzadeh This is me

Publication Date January 8, 2019
Published in Issue Year 2019

Cite

APA Mahmoudifar, A., Moghaddamfar, A. R., & Salehzadeh, F. (2019). GROUP PARTITIONS VIA COMMUTATIVITY. International Electronic Journal of Algebra, 25(25), 224-231. https://doi.org/10.24330/ieja.504159
AMA Mahmoudifar A, Moghaddamfar AR, Salehzadeh F. GROUP PARTITIONS VIA COMMUTATIVITY. IEJA. January 2019;25(25):224-231. doi:10.24330/ieja.504159
Chicago Mahmoudifar, A., A. R. Moghaddamfar, and F. Salehzadeh. “GROUP PARTITIONS VIA COMMUTATIVITY”. International Electronic Journal of Algebra 25, no. 25 (January 2019): 224-31. https://doi.org/10.24330/ieja.504159.
EndNote Mahmoudifar A, Moghaddamfar AR, Salehzadeh F (January 1, 2019) GROUP PARTITIONS VIA COMMUTATIVITY. International Electronic Journal of Algebra 25 25 224–231.
IEEE A. Mahmoudifar, A. R. Moghaddamfar, and F. Salehzadeh, “GROUP PARTITIONS VIA COMMUTATIVITY”, IEJA, vol. 25, no. 25, pp. 224–231, 2019, doi: 10.24330/ieja.504159.
ISNAD Mahmoudifar, A. et al. “GROUP PARTITIONS VIA COMMUTATIVITY”. International Electronic Journal of Algebra 25/25 (January 2019), 224-231. https://doi.org/10.24330/ieja.504159.
JAMA Mahmoudifar A, Moghaddamfar AR, Salehzadeh F. GROUP PARTITIONS VIA COMMUTATIVITY. IEJA. 2019;25:224–231.
MLA Mahmoudifar, A. et al. “GROUP PARTITIONS VIA COMMUTATIVITY”. International Electronic Journal of Algebra, vol. 25, no. 25, 2019, pp. 224-31, doi:10.24330/ieja.504159.
Vancouver Mahmoudifar A, Moghaddamfar AR, Salehzadeh F. GROUP PARTITIONS VIA COMMUTATIVITY. IEJA. 2019;25(25):224-31.