Research Article
BibTex RIS Cite
Year 2019, , 13 - 28, 11.07.2019
https://doi.org/10.24330/ieja.586882

Abstract

References

  • H. I. Blau, Table algebras, European J. Combin., 30(6) (2009), 1426-1455.
  • A. Hanaki, Character products of association schemes, J. Algebra, 283(2) (2005), 596-603.
  • A. Herman, M. Muzychuk and B. Xu, The recognition problem for table algebras and reality-based algebras, J. Algebra, 479 (2017), 173-191.
  • A. Masuoka, Semisimple Hopf algebras of dimension 6,8, Israel J. Math., 92 (1995), 361-373.
  • A. Masuoka, The p^n theorem for semisimple Hopf algebras, Proc. Amer. Math. Soc., 124 (1996), 735-737.
  • D. E. Radford, Hopf Algebras, Series on Knots and Everything, 49, World Scienti c Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
  • Y. Zhu, Hopf algebras of prime dimension, Internat. Math. Res. Notices, 1 (1994), 53-59.

EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS

Year 2019, , 13 - 28, 11.07.2019
https://doi.org/10.24330/ieja.586882

Abstract

Let $A$ be a table algebra with standard basis $\mathbf{B}$, multiplication $\mu$, unit map $\eta$, skew-linear involution $*$, and degree map $\delta$.  In this article we study the possible coalgebra structures $(A,\Delta, \delta)$ on $A$ for which $(A, \mu, \eta, \Delta, \delta)$ becomes a Hopf algebra with respect to some antipode.  We show that such Hopf algebra structures are not always available for noncommutative table algebras.  On the other hand, commutative table algebras will always have a Hopf algebra structure induced from an algebra-isomorphic group algebra.  To illustrate our approach, we derive Hopf algebra comultiplications on table algebras of dimension 2 and 3.

References

  • H. I. Blau, Table algebras, European J. Combin., 30(6) (2009), 1426-1455.
  • A. Hanaki, Character products of association schemes, J. Algebra, 283(2) (2005), 596-603.
  • A. Herman, M. Muzychuk and B. Xu, The recognition problem for table algebras and reality-based algebras, J. Algebra, 479 (2017), 173-191.
  • A. Masuoka, Semisimple Hopf algebras of dimension 6,8, Israel J. Math., 92 (1995), 361-373.
  • A. Masuoka, The p^n theorem for semisimple Hopf algebras, Proc. Amer. Math. Soc., 124 (1996), 735-737.
  • D. E. Radford, Hopf Algebras, Series on Knots and Everything, 49, World Scienti c Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
  • Y. Zhu, Hopf algebras of prime dimension, Internat. Math. Res. Notices, 1 (1994), 53-59.
There are 7 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Allen Herman This is me

Gurmail Singh This is me

Publication Date July 11, 2019
Published in Issue Year 2019

Cite

APA Herman, A., & Singh, G. (2019). EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS. International Electronic Journal of Algebra, 26(26), 13-28. https://doi.org/10.24330/ieja.586882
AMA Herman A, Singh G. EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS. IEJA. July 2019;26(26):13-28. doi:10.24330/ieja.586882
Chicago Herman, Allen, and Gurmail Singh. “EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS”. International Electronic Journal of Algebra 26, no. 26 (July 2019): 13-28. https://doi.org/10.24330/ieja.586882.
EndNote Herman A, Singh G (July 1, 2019) EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS. International Electronic Journal of Algebra 26 26 13–28.
IEEE A. Herman and G. Singh, “EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS”, IEJA, vol. 26, no. 26, pp. 13–28, 2019, doi: 10.24330/ieja.586882.
ISNAD Herman, Allen - Singh, Gurmail. “EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS”. International Electronic Journal of Algebra 26/26 (July 2019), 13-28. https://doi.org/10.24330/ieja.586882.
JAMA Herman A, Singh G. EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS. IEJA. 2019;26:13–28.
MLA Herman, Allen and Gurmail Singh. “EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS”. International Electronic Journal of Algebra, vol. 26, no. 26, 2019, pp. 13-28, doi:10.24330/ieja.586882.
Vancouver Herman A, Singh G. EXTENDING TABLE ALGEBRAS TO HOPF ALGEBRAS. IEJA. 2019;26(26):13-28.

Cited By