Research Article
BibTex RIS Cite
Year 2020, , 169 - 177, 07.01.2020
https://doi.org/10.24330/ieja.663001

Abstract

References

  • F. Buekenhout, A. Delandtsheer, J. Doyen, P. B. Kleidman, M. W. Liebeck and J. Saxl, Linear spaces with flag-transitive automorphism groups, Geom. Dedicata, 36(1) (1990), 89-94.
  • P. J. Cameron and C. E. Praeger, Block-transitive t-designs, II: large t, In Finite geometry and combinatorics, Deinze, 1992, London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, 191 (1993), 103-119.
  • S. Dai and S. Li, Flag-transitive 4-(v; k; 4) designs and PSL(2; q) groups, Util. Math., 105 (2017), 3-11.
  • M. Huber, A census of highly symmetric combinatorial designs, J. Algebraic Combin., 26(4) (2007), 453-476.
  • M. Huber, Flag-Transitive Steiner Designs, Frontiers in Mathematics, Birkhauser Verlag, Basel, 2009.
  • B. Huppert, Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967.
  • W. J. Liu, Q. H. Tan and L. Z. Gong, Flag-transitive 5-(v; k; 2) designs, J. Jiangsu Univ. (Natural Science Edition), 31(5) (2010), 612-615.
  • H. Shen, The Theory of Combinatorial Design, Shanghai Jiao Tong Univ. Press, Shanghai, 2008.
  • X. Xu and W. Liu, On flag-transitive 6-(v; k; $\lambda$) designs with $\lambda \leq 5$, Ars Combin., 97 (2010), 507-510.

A NOTE ON FLAG-TRANSITIVE 5-(v, k, 4) DESIGNS

Year 2020, , 169 - 177, 07.01.2020
https://doi.org/10.24330/ieja.663001

Abstract

This article is a contribution to the study of the automorphism groups of $5$-$(v,k,4)$ designs. Let ${\mathcal S}$=$({\mathcal P},{\mathcal B})$ be a non-trivial $5$-$(q+1,k,4)$ design. If $G$ acts flag-transitively on $\mathcal S$, then $G$ is not two-dimensional projective linear group $PSL(2,q)$.

References

  • F. Buekenhout, A. Delandtsheer, J. Doyen, P. B. Kleidman, M. W. Liebeck and J. Saxl, Linear spaces with flag-transitive automorphism groups, Geom. Dedicata, 36(1) (1990), 89-94.
  • P. J. Cameron and C. E. Praeger, Block-transitive t-designs, II: large t, In Finite geometry and combinatorics, Deinze, 1992, London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, 191 (1993), 103-119.
  • S. Dai and S. Li, Flag-transitive 4-(v; k; 4) designs and PSL(2; q) groups, Util. Math., 105 (2017), 3-11.
  • M. Huber, A census of highly symmetric combinatorial designs, J. Algebraic Combin., 26(4) (2007), 453-476.
  • M. Huber, Flag-Transitive Steiner Designs, Frontiers in Mathematics, Birkhauser Verlag, Basel, 2009.
  • B. Huppert, Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967.
  • W. J. Liu, Q. H. Tan and L. Z. Gong, Flag-transitive 5-(v; k; 2) designs, J. Jiangsu Univ. (Natural Science Edition), 31(5) (2010), 612-615.
  • H. Shen, The Theory of Combinatorial Design, Shanghai Jiao Tong Univ. Press, Shanghai, 2008.
  • X. Xu and W. Liu, On flag-transitive 6-(v; k; $\lambda$) designs with $\lambda \leq 5$, Ars Combin., 97 (2010), 507-510.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Shaojun Dai This is me

Shangzhao Li This is me

Publication Date January 7, 2020
Published in Issue Year 2020

Cite

APA Dai, S., & Li, S. (2020). A NOTE ON FLAG-TRANSITIVE 5-(v, k, 4) DESIGNS. International Electronic Journal of Algebra, 27(27), 169-177. https://doi.org/10.24330/ieja.663001
AMA Dai S, Li S. A NOTE ON FLAG-TRANSITIVE 5-(v, k, 4) DESIGNS. IEJA. January 2020;27(27):169-177. doi:10.24330/ieja.663001
Chicago Dai, Shaojun, and Shangzhao Li. “A NOTE ON FLAG-TRANSITIVE 5-(v, K, 4) DESIGNS”. International Electronic Journal of Algebra 27, no. 27 (January 2020): 169-77. https://doi.org/10.24330/ieja.663001.
EndNote Dai S, Li S (January 1, 2020) A NOTE ON FLAG-TRANSITIVE 5-(v, k, 4) DESIGNS. International Electronic Journal of Algebra 27 27 169–177.
IEEE S. Dai and S. Li, “A NOTE ON FLAG-TRANSITIVE 5-(v, k, 4) DESIGNS”, IEJA, vol. 27, no. 27, pp. 169–177, 2020, doi: 10.24330/ieja.663001.
ISNAD Dai, Shaojun - Li, Shangzhao. “A NOTE ON FLAG-TRANSITIVE 5-(v, K, 4) DESIGNS”. International Electronic Journal of Algebra 27/27 (January 2020), 169-177. https://doi.org/10.24330/ieja.663001.
JAMA Dai S, Li S. A NOTE ON FLAG-TRANSITIVE 5-(v, k, 4) DESIGNS. IEJA. 2020;27:169–177.
MLA Dai, Shaojun and Shangzhao Li. “A NOTE ON FLAG-TRANSITIVE 5-(v, K, 4) DESIGNS”. International Electronic Journal of Algebra, vol. 27, no. 27, 2020, pp. 169-77, doi:10.24330/ieja.663001.
Vancouver Dai S, Li S. A NOTE ON FLAG-TRANSITIVE 5-(v, k, 4) DESIGNS. IEJA. 2020;27(27):169-77.