Research Article
BibTex RIS Cite

INDECOMPOSABLE NON UNISERIAL MODULES OF LENGTH THREE

Year 2020, , 218 - 236, 07.01.2020
https://doi.org/10.24330/ieja.663075

Abstract

We investigate a particular class of indecomposable modules of length three, defined over a $K$--algebra, with a simple socle and two non isomorphic simple factor modules. These modules may have any projective dimension different from zero. On the other hand their composition factors may have any countable dimension as vector spaces over the underlying field $K$. Moreover their endomorphism rings are $K$--vector spaces of dimension $\leq 2$.

References

  • I. Assem, D. Simson and A. Skowronski, Elements of the Representation Theory of Associative Algebras, Vol. 1, London Mathematical Society Student Texts, 65, Cambridge University Press, Cambridge, 2006.
  • M. Auslander, I. Reiten and S. O. Smal\o, Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, Cambridge, 1995.
  • J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Supplements and Projectivity in Module Theory, Frontiers in Math., Boston, Birkhauser, 2006.
  • G. D'Este and D. Keskin Tutuncu, Pseudo projective modules which are not quasi projective and quivers, Taiwanese J. Math., 22(5) (2018), 1083-1090.
  • P. A. Guil Asensio, D. Keskin Tutuncu, B. Kalebogaz and A. K. Srivastava, Modules which are coinvariant under automorphisms of their projective covers, J. Algebra, 466 (2016), 147-152.
Year 2020, , 218 - 236, 07.01.2020
https://doi.org/10.24330/ieja.663075

Abstract

References

  • I. Assem, D. Simson and A. Skowronski, Elements of the Representation Theory of Associative Algebras, Vol. 1, London Mathematical Society Student Texts, 65, Cambridge University Press, Cambridge, 2006.
  • M. Auslander, I. Reiten and S. O. Smal\o, Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, Cambridge, 1995.
  • J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Supplements and Projectivity in Module Theory, Frontiers in Math., Boston, Birkhauser, 2006.
  • G. D'Este and D. Keskin Tutuncu, Pseudo projective modules which are not quasi projective and quivers, Taiwanese J. Math., 22(5) (2018), 1083-1090.
  • P. A. Guil Asensio, D. Keskin Tutuncu, B. Kalebogaz and A. K. Srivastava, Modules which are coinvariant under automorphisms of their projective covers, J. Algebra, 466 (2016), 147-152.
There are 5 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Gabriella D'este This is me

Publication Date January 7, 2020
Published in Issue Year 2020

Cite

APA D’este, G. (2020). INDECOMPOSABLE NON UNISERIAL MODULES OF LENGTH THREE. International Electronic Journal of Algebra, 27(27), 218-236. https://doi.org/10.24330/ieja.663075
AMA D’este G. INDECOMPOSABLE NON UNISERIAL MODULES OF LENGTH THREE. IEJA. January 2020;27(27):218-236. doi:10.24330/ieja.663075
Chicago D’este, Gabriella. “INDECOMPOSABLE NON UNISERIAL MODULES OF LENGTH THREE”. International Electronic Journal of Algebra 27, no. 27 (January 2020): 218-36. https://doi.org/10.24330/ieja.663075.
EndNote D’este G (January 1, 2020) INDECOMPOSABLE NON UNISERIAL MODULES OF LENGTH THREE. International Electronic Journal of Algebra 27 27 218–236.
IEEE G. D’este, “INDECOMPOSABLE NON UNISERIAL MODULES OF LENGTH THREE”, IEJA, vol. 27, no. 27, pp. 218–236, 2020, doi: 10.24330/ieja.663075.
ISNAD D’este, Gabriella. “INDECOMPOSABLE NON UNISERIAL MODULES OF LENGTH THREE”. International Electronic Journal of Algebra 27/27 (January 2020), 218-236. https://doi.org/10.24330/ieja.663075.
JAMA D’este G. INDECOMPOSABLE NON UNISERIAL MODULES OF LENGTH THREE. IEJA. 2020;27:218–236.
MLA D’este, Gabriella. “INDECOMPOSABLE NON UNISERIAL MODULES OF LENGTH THREE”. International Electronic Journal of Algebra, vol. 27, no. 27, 2020, pp. 218-36, doi:10.24330/ieja.663075.
Vancouver D’este G. INDECOMPOSABLE NON UNISERIAL MODULES OF LENGTH THREE. IEJA. 2020;27(27):218-36.