Research Article
BibTex RIS Cite

ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA

Year 2021, , 134 - 147, 05.01.2021
https://doi.org/10.24330/ieja.852120

Abstract

Let $R$ be a commutative ring with $1 \ne 0$ and let $m$ and
$n$ be integers with $1\leq n < m$. A proper ideal $I$ of $R$ is
called an $(m, n)$-closed ideal of $R$ if whenever $a^m \in I$ for
some $a\in R$ implies $a^n \in I$. Let $ f:A\rightarrow B$ be a
ring homomorphism and let $J$ be an ideal of $B.$ This paper
investigates the concept of $(m,n)$-closed ideals in the
amalgamation of $A$ with $B$ along $J$ with respect $f$ denoted by
$A\bowtie^{f}J$. Namely, Section 2 investigates this notion to
some extensions of ideals of $A$ to $A\bowtie^fJ$. Section 3
features the main result, which examines when each proper ideal of
$A\bowtie^fJ$ is an $(m,n)$-closed ideal. This allows us to give
necessary and sufficient conditions for the amalgamation to
inherit the radical ideal property with applications on the
transfer of von Neumann regular, $\pi$-regular and semisimple
properties.

References

  • D. F. Anderson and A. Badawi, On $n$-absorbing ideals of commutative rings, Comm. Algebra, 39 (2011), 1646-1672.
  • D. F. Anderson and A. Badawi, On $(m, n)$-closed ideals of commutative rings, J. Algebra Appl., 16(1) (2017), 1750013 (21 pp).
  • D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1(1) (2009), 3-56.
  • A. Badawi, M. Issoual and N. Mahdou, On $n$-absorbing ideals and $(m, n)$-closed ideals in trivial ring extensions of commutative rings, J. Algebra Appl., 18(7) (2019), 1950123 (19 pp).
  • M. B. Boisen, Jr. and P. B. Sheldon, CPI-extensions: overrings of integral domains with special prime spectrums, Canadian J. Math., 29(4) (1977), 722-737.
  • M. Chhiti, N. Mahdou and M. Tamekkante, Clean property in amalgamated algebras along an ideal, Hacet. J. Math. Stat., 44(1) (2015), 41-49.
  • M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat., 45 (2007), 241-252.
  • M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443-459.
  • M. D'Anna, C. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, Commutative algebra and its applications, Walter de Gruyter, Berlin, (2009), 155-172.
  • M. D'Anna, C. A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214 (2010), 1633-1641.
  • M. D'Anna, C. A. Finocchiaro and M. Fontana, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra, 44(5) (2016), 1836-1851.
  • S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989.
  • J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  • M. Issoual, N. Mahdou and M. A. S. Moutui, On $n$-absorbing and strongly $n$-absorbing ideals of amalgamation, J. Algebra Appl., (2020), 2050199 (16 pp).
  • N. Mahdou and M. A. S. Moutui, On (A)-rings and strong (A)-rings issued from amalgamations, Studia Sci. Math. Hungar., 55(2) (2018), 270-279.
  • M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Mathematics, 13, Interscience Publishers a division of John Wiley & Sons, New York-London, 1962.
Year 2021, , 134 - 147, 05.01.2021
https://doi.org/10.24330/ieja.852120

Abstract

References

  • D. F. Anderson and A. Badawi, On $n$-absorbing ideals of commutative rings, Comm. Algebra, 39 (2011), 1646-1672.
  • D. F. Anderson and A. Badawi, On $(m, n)$-closed ideals of commutative rings, J. Algebra Appl., 16(1) (2017), 1750013 (21 pp).
  • D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1(1) (2009), 3-56.
  • A. Badawi, M. Issoual and N. Mahdou, On $n$-absorbing ideals and $(m, n)$-closed ideals in trivial ring extensions of commutative rings, J. Algebra Appl., 18(7) (2019), 1950123 (19 pp).
  • M. B. Boisen, Jr. and P. B. Sheldon, CPI-extensions: overrings of integral domains with special prime spectrums, Canadian J. Math., 29(4) (1977), 722-737.
  • M. Chhiti, N. Mahdou and M. Tamekkante, Clean property in amalgamated algebras along an ideal, Hacet. J. Math. Stat., 44(1) (2015), 41-49.
  • M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat., 45 (2007), 241-252.
  • M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443-459.
  • M. D'Anna, C. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, Commutative algebra and its applications, Walter de Gruyter, Berlin, (2009), 155-172.
  • M. D'Anna, C. A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214 (2010), 1633-1641.
  • M. D'Anna, C. A. Finocchiaro and M. Fontana, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra, 44(5) (2016), 1836-1851.
  • S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989.
  • J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  • M. Issoual, N. Mahdou and M. A. S. Moutui, On $n$-absorbing and strongly $n$-absorbing ideals of amalgamation, J. Algebra Appl., (2020), 2050199 (16 pp).
  • N. Mahdou and M. A. S. Moutui, On (A)-rings and strong (A)-rings issued from amalgamations, Studia Sci. Math. Hungar., 55(2) (2018), 270-279.
  • M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Mathematics, 13, Interscience Publishers a division of John Wiley & Sons, New York-London, 1962.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Mohammed Issoual This is me

Najib Mahdou This is me

Moutu Abdou Salam Moutuı

Publication Date January 5, 2021
Published in Issue Year 2021

Cite

APA Issoual, M., Mahdou, N., & Moutuı, M. A. S. (2021). ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA. International Electronic Journal of Algebra, 29(29), 134-147. https://doi.org/10.24330/ieja.852120
AMA Issoual M, Mahdou N, Moutuı MAS. ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA. IEJA. January 2021;29(29):134-147. doi:10.24330/ieja.852120
Chicago Issoual, Mohammed, Najib Mahdou, and Moutu Abdou Salam Moutuı. “ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA”. International Electronic Journal of Algebra 29, no. 29 (January 2021): 134-47. https://doi.org/10.24330/ieja.852120.
EndNote Issoual M, Mahdou N, Moutuı MAS (January 1, 2021) ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA. International Electronic Journal of Algebra 29 29 134–147.
IEEE M. Issoual, N. Mahdou, and M. A. S. Moutuı, “ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA”, IEJA, vol. 29, no. 29, pp. 134–147, 2021, doi: 10.24330/ieja.852120.
ISNAD Issoual, Mohammed et al. “ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA”. International Electronic Journal of Algebra 29/29 (January 2021), 134-147. https://doi.org/10.24330/ieja.852120.
JAMA Issoual M, Mahdou N, Moutuı MAS. ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA. IEJA. 2021;29:134–147.
MLA Issoual, Mohammed et al. “ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA”. International Electronic Journal of Algebra, vol. 29, no. 29, 2021, pp. 134-47, doi:10.24330/ieja.852120.
Vancouver Issoual M, Mahdou N, Moutuı MAS. ON $(m,n)$-CLOSED IDEALS IN AMALGAMATED ALGEBRA. IEJA. 2021;29(29):134-47.