Research Article
BibTex RIS Cite

TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA

Year 2021, , 175 - 186, 05.01.2021
https://doi.org/10.24330/ieja.852178

Abstract

We consider the BGG category $\O$ of a quantized universal
enveloping algebra $U_q(\mathfrak{g})$. We call a module $M\in
\O$ tensor-closed if $M\otimes N\in\O$ for any $N\in \O$. In this
paper we prove that $M\in \O$ is tensor-closed if and only if $M$
is finite dimensional. The method used in this paper applies to
the unquantized case as well.

References

  • H. H. Andersen and V. Mazorchuk, Category $\mathscr{O}$ for quantum groups, J. Eur. Math. Soc., 17(2) (2015), 405-431.
  • J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Second printing, revised, Graduate Texts in Mathematics, 9, Springer-Verlag, New York-Berlin, 1978.
  • J. E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category $\mathscr{O}$, Graduate Studies in Mathematics, 94, American Mathematical Society, Providence, RI, 2008.
  • J. E. Humphreys, Tensor-closed objects of the BGG category $\mathscr{O}$, (2015), Preprint available on the author's website: http://people.math.umass.edu / jeh/pub/ tensor.pdf.
  • A. Joseph, Quantum Groups and Their Primitive Ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete, (3) 29, Springer-Verlag, Berlin, 1995.
  • V. A. Lunts and A. L. Rosenberg, Localization for quantum groups, Selecta Math. (N.S.), 5(1) (1999), 123-159.
  • C. Voigt and R. Yuncken, Complex semisimple quantum groups and representation theory, (2017), arXiv:1705.05661.
  • Z. Wei, Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE, (2019), Preprint available on the author's website: https://drive.google.com/file/d/1ZogGH4Rfenq7AXTvxOdsoqGbSHCbfrjr/view.
  • Z. Wei, Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE, (2019), Preprint available on the author's website: https://drive.google.com/file/d/1ZogGH4Rfenq7AXTvxOdsoqGbSHCbfrjr/view.
Year 2021, , 175 - 186, 05.01.2021
https://doi.org/10.24330/ieja.852178

Abstract

References

  • H. H. Andersen and V. Mazorchuk, Category $\mathscr{O}$ for quantum groups, J. Eur. Math. Soc., 17(2) (2015), 405-431.
  • J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Second printing, revised, Graduate Texts in Mathematics, 9, Springer-Verlag, New York-Berlin, 1978.
  • J. E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category $\mathscr{O}$, Graduate Studies in Mathematics, 94, American Mathematical Society, Providence, RI, 2008.
  • J. E. Humphreys, Tensor-closed objects of the BGG category $\mathscr{O}$, (2015), Preprint available on the author's website: http://people.math.umass.edu / jeh/pub/ tensor.pdf.
  • A. Joseph, Quantum Groups and Their Primitive Ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete, (3) 29, Springer-Verlag, Berlin, 1995.
  • V. A. Lunts and A. L. Rosenberg, Localization for quantum groups, Selecta Math. (N.S.), 5(1) (1999), 123-159.
  • C. Voigt and R. Yuncken, Complex semisimple quantum groups and representation theory, (2017), arXiv:1705.05661.
  • Z. Wei, Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE, (2019), Preprint available on the author's website: https://drive.google.com/file/d/1ZogGH4Rfenq7AXTvxOdsoqGbSHCbfrjr/view.
  • Z. Wei, Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE, (2019), Preprint available on the author's website: https://drive.google.com/file/d/1ZogGH4Rfenq7AXTvxOdsoqGbSHCbfrjr/view.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Zhaoting Weı This is me

Publication Date January 5, 2021
Published in Issue Year 2021

Cite

APA Weı, Z. (2021). TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA. International Electronic Journal of Algebra, 29(29), 175-186. https://doi.org/10.24330/ieja.852178
AMA Weı Z. TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA. IEJA. January 2021;29(29):175-186. doi:10.24330/ieja.852178
Chicago Weı, Zhaoting. “TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA”. International Electronic Journal of Algebra 29, no. 29 (January 2021): 175-86. https://doi.org/10.24330/ieja.852178.
EndNote Weı Z (January 1, 2021) TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA. International Electronic Journal of Algebra 29 29 175–186.
IEEE Z. Weı, “TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA”, IEJA, vol. 29, no. 29, pp. 175–186, 2021, doi: 10.24330/ieja.852178.
ISNAD Weı, Zhaoting. “TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA”. International Electronic Journal of Algebra 29/29 (January 2021), 175-186. https://doi.org/10.24330/ieja.852178.
JAMA Weı Z. TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA. IEJA. 2021;29:175–186.
MLA Weı, Zhaoting. “TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA”. International Electronic Journal of Algebra, vol. 29, no. 29, 2021, pp. 175-86, doi:10.24330/ieja.852178.
Vancouver Weı Z. TENSOR-CLOSED OBJECTS IN THE BGG CATEGORY OF A QUANTIZED SEMISIMPLE LIE ALGEBRA. IEJA. 2021;29(29):175-86.