Year 2021,
, 243 - 259, 17.07.2021
Mohammad Bagherı
Abdol-javad Taherızadeh
Abstract
Let $C$ be a semidualizing module over a commutative Noetherian local ring $R$. In this paper we introduce a new class of modules, namely $C$-canonical modules which are a generalization of canonical modules. It is shown that if the canonical module exists then the $C$-canonical module exists and the converse holds under special conditions. Also, a new characterization of Gorenstein local rings is given via $C$-canonical modules.
References
- Y. Aoyama, On the depth and the projective dimension of the canonical module,
Japan. J. Math., 6 (1980), 61-66.
- Y. Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ.,
23 (1983), 85-94.
- M. P. Brodmann, R. Y. Sharp, Local Cohomology: An Algebraic Introduction
with Geometric Applications, Second edition, Cambridge University Press,
2013.
- W. Bruns and J. Herzog, Cohen-Macaulay Rings, Revised edition, Cambridge
University Press, Cambridge, 1993.
- L. W. Christensen, Semi-dualizing complexes and their Auslander categories,
Trans. Amer. Math. Soc., 353(5) (2001), 1839-1883.
- L. W. Christensen and S. Sather-Wagstaff, A Cohen-Macaulay algebra has
only finitely many semidualizing modules, Math. Proc. Cambridge Philos. Soc.,
145(3) (2008), 601-603.
- Mohammad T. Dibaei and Arash Sadeghi, Linkage of modules and the Serre
conditions, J. Pure Appl. Algebra, 219 (2015), 4458-4478.
- H.-B. Foxby, Gorenstein modules and related modules, Math. Scand., 31
(1972), 267-284.
- A. J. Frankild, S. Sather-Wagstaff, and A. Taylor, Relations between semidualizing complexes, J. Commut. Algebra, 1(3) (2009), 393-436.
- E. S. Golod, $G$-dimension and generalized perfect ideals, Trudy Mat. Inst.
Steklov., 165 (1984), 62-66.
- R. Hartshorne, Local Cohomology, A seminar given by A. Grothendieck, Harvard University, Fall 1961, Springer-Verlag, Berlin-New York, 1967.
- J. Herzog and E. Kunz, Der kanonische Modul eines Cohen-Macaulay-Rings,
Lect. Notes in Math., Vol. 238, Springer-Verlag, Berlin-New York, 1971.
- M. Hochster and C. Huneke, Indecomposable canonical modules and connectedness, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 197-208.
- H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced
Mathematics, Vol. 8, Cambridge University Press, Cambridge, 1986.
- S. Nasseh and S. Sather-Wagstaff, Geometric aspects of representation theory
for DG algebras: answering a question of Vasconcelos, J. Lond. Math. Soc.
(2), 96(1) (2017), 271-292.
- I. Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc.
Amer. Math. Soc., 32 (1972), 417-420.
- R. Y. Sharp, Finitely generated modules of finite injective dimension over certain Cohen-Macaulay rings, Proc. Lond. Math. Soc. (3), 25 (1972), 303-328.
- R. Takahashi and D. White, Homological aspects of semidualizing modules,
Math. Scand., 106(1) (2010), 5-22.
- W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland
Mathematics Studies, No. 14., North-Holland Publishing Co., Amsterdam-Oxford, 1974.
- S. Sather-Wagstaff, Semidualizing modules and the divisor class group, Illinois
J. Math., 51(1) (2007), 255-285.
- S. Sather-Wagstaff, Semidualizing Modules, in preperation,
URL: https://www.ndsu.edu/pubweb/ ssatherw/DOCS/sdm.pdf.
Year 2021,
, 243 - 259, 17.07.2021
Mohammad Bagherı
Abdol-javad Taherızadeh
References
- Y. Aoyama, On the depth and the projective dimension of the canonical module,
Japan. J. Math., 6 (1980), 61-66.
- Y. Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ.,
23 (1983), 85-94.
- M. P. Brodmann, R. Y. Sharp, Local Cohomology: An Algebraic Introduction
with Geometric Applications, Second edition, Cambridge University Press,
2013.
- W. Bruns and J. Herzog, Cohen-Macaulay Rings, Revised edition, Cambridge
University Press, Cambridge, 1993.
- L. W. Christensen, Semi-dualizing complexes and their Auslander categories,
Trans. Amer. Math. Soc., 353(5) (2001), 1839-1883.
- L. W. Christensen and S. Sather-Wagstaff, A Cohen-Macaulay algebra has
only finitely many semidualizing modules, Math. Proc. Cambridge Philos. Soc.,
145(3) (2008), 601-603.
- Mohammad T. Dibaei and Arash Sadeghi, Linkage of modules and the Serre
conditions, J. Pure Appl. Algebra, 219 (2015), 4458-4478.
- H.-B. Foxby, Gorenstein modules and related modules, Math. Scand., 31
(1972), 267-284.
- A. J. Frankild, S. Sather-Wagstaff, and A. Taylor, Relations between semidualizing complexes, J. Commut. Algebra, 1(3) (2009), 393-436.
- E. S. Golod, $G$-dimension and generalized perfect ideals, Trudy Mat. Inst.
Steklov., 165 (1984), 62-66.
- R. Hartshorne, Local Cohomology, A seminar given by A. Grothendieck, Harvard University, Fall 1961, Springer-Verlag, Berlin-New York, 1967.
- J. Herzog and E. Kunz, Der kanonische Modul eines Cohen-Macaulay-Rings,
Lect. Notes in Math., Vol. 238, Springer-Verlag, Berlin-New York, 1971.
- M. Hochster and C. Huneke, Indecomposable canonical modules and connectedness, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 197-208.
- H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced
Mathematics, Vol. 8, Cambridge University Press, Cambridge, 1986.
- S. Nasseh and S. Sather-Wagstaff, Geometric aspects of representation theory
for DG algebras: answering a question of Vasconcelos, J. Lond. Math. Soc.
(2), 96(1) (2017), 271-292.
- I. Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc.
Amer. Math. Soc., 32 (1972), 417-420.
- R. Y. Sharp, Finitely generated modules of finite injective dimension over certain Cohen-Macaulay rings, Proc. Lond. Math. Soc. (3), 25 (1972), 303-328.
- R. Takahashi and D. White, Homological aspects of semidualizing modules,
Math. Scand., 106(1) (2010), 5-22.
- W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland
Mathematics Studies, No. 14., North-Holland Publishing Co., Amsterdam-Oxford, 1974.
- S. Sather-Wagstaff, Semidualizing modules and the divisor class group, Illinois
J. Math., 51(1) (2007), 255-285.
- S. Sather-Wagstaff, Semidualizing Modules, in preperation,
URL: https://www.ndsu.edu/pubweb/ ssatherw/DOCS/sdm.pdf.