Research Article
BibTex RIS Cite

FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS

Year 2017, Volume: 21 Issue: 21, 103 - 120, 17.01.2017
https://doi.org/10.24330/ieja.296155

Abstract

In this paper we study some classes of rings which have a finite
lattice of preradicals. We characterize commutative rings with this condition as
finite representation type rings, i.e., artinian principal ideal rings. In general,
it is easy to see that the lattice of preradicals of a left pure semisimple ring
is a set, but it may be infinite. In fact, for a finite dimensional path algebra
Λ over an algebraically closed field we prove that Λ-pr is finite if and only if
its quiver is a disjoint union of finite quivers of type An; hence there are path
algebras of finite representation type such that its lattice of preradicals is an
infinite set. As an example, we describe the lattice of preradicals over Λ = kQ
when Q is of type An and it has the canonical orientation

References

  • [1] I. Assem, D. Simson and A. Skowronski, Elements of the Representation Theory
  • of Associative Algebras, Vol.1, London Mathematical Society Student
  • Texts, 65, Cambridge University Press, Cambridge, 2006.
  • [2] M. Auslander, Representation theory of Artin algebras II, Comm. Algebra, 1
  • (1974), 269–310.
  • [3] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras,
  • Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, Cambridge, 1997.
  • [4] L. Bican, T. Kepka and P. Nemec, Rings, Modules and Preradicals, Lecture
  • Notes in Pure and Applied Mathematics, 75, Marcel Dekker, Inc., New York,1982.
  • [5] G. Birkhoff, Lattice Theory, Colloquium Publications XXV, American Mathematical
  • Society, New York, 1948.
  • [
  • [6] D. Eisenbud and P. Griffith, The structure of serial rings, Pacific J. Math., 36(1971), 109–121.
  • [7] R. Fern´andez-Alonso and S. Gavito, The lattice of preradicals over local uniserial
  • rings, J. Algebra Appl., 5(6) (2006), 731–746.
  • [8] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math., 6 (1972), 71–103.
  • [9] G. Gr¨atzer, General Lattice Theory, Birkh¨auser Verlag, Basel, 2003.
  • [10] L. Gruson and C. U. Jensen, Deux applications de la notion de L-dimension,
  • C. R. Acad. Sci. Paris, S´er. A-B, 282(1) (1976), 23–24.
  • [11] B. Huisgen-Zimmermann, Purity, algebraic compactness, direct sum decompositions
  • and representation type, Infinite length modules, Trends Math.,(2000), 331–367.
  • [12] F. Raggi, J. R. Montes, H. Rinc´on, R. Fern´andez-Alonso and C. Signoret, The
  • lattice structure of preradicals, Comm. Algebra, 30(3) (2002), 1533–1544.
  • [13] F. Raggi, J. R´ıos, H. Rinc´on, R. Fern´andez-Alonso and C. Signoret, The lattice
  • structure of preradicals II: Partitions, J. Algebra Appl., 1(2) (2002), 201–214.
  • [14] R. P. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth and Brooks/Cole
  • Advanced Books and Software, Monterey, CA, 1986.
  • [15] B. Stenstr¨om, Rings of Quotients, Die Grundlehrem der Mathematischen Wissenschaften
  • 217, Springer-Verlag, New York-Heidelberg, 1975.
  • [16] B. Zimmermann-Huisgen and W. Zimmermann, On the sparsity of representations
  • of rings of pure global dimension zero, Trans. Amer. Math. Soc., 320(2)
  • (1990), 695–711.
Year 2017, Volume: 21 Issue: 21, 103 - 120, 17.01.2017
https://doi.org/10.24330/ieja.296155

Abstract

References

  • [1] I. Assem, D. Simson and A. Skowronski, Elements of the Representation Theory
  • of Associative Algebras, Vol.1, London Mathematical Society Student
  • Texts, 65, Cambridge University Press, Cambridge, 2006.
  • [2] M. Auslander, Representation theory of Artin algebras II, Comm. Algebra, 1
  • (1974), 269–310.
  • [3] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras,
  • Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, Cambridge, 1997.
  • [4] L. Bican, T. Kepka and P. Nemec, Rings, Modules and Preradicals, Lecture
  • Notes in Pure and Applied Mathematics, 75, Marcel Dekker, Inc., New York,1982.
  • [5] G. Birkhoff, Lattice Theory, Colloquium Publications XXV, American Mathematical
  • Society, New York, 1948.
  • [
  • [6] D. Eisenbud and P. Griffith, The structure of serial rings, Pacific J. Math., 36(1971), 109–121.
  • [7] R. Fern´andez-Alonso and S. Gavito, The lattice of preradicals over local uniserial
  • rings, J. Algebra Appl., 5(6) (2006), 731–746.
  • [8] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math., 6 (1972), 71–103.
  • [9] G. Gr¨atzer, General Lattice Theory, Birkh¨auser Verlag, Basel, 2003.
  • [10] L. Gruson and C. U. Jensen, Deux applications de la notion de L-dimension,
  • C. R. Acad. Sci. Paris, S´er. A-B, 282(1) (1976), 23–24.
  • [11] B. Huisgen-Zimmermann, Purity, algebraic compactness, direct sum decompositions
  • and representation type, Infinite length modules, Trends Math.,(2000), 331–367.
  • [12] F. Raggi, J. R. Montes, H. Rinc´on, R. Fern´andez-Alonso and C. Signoret, The
  • lattice structure of preradicals, Comm. Algebra, 30(3) (2002), 1533–1544.
  • [13] F. Raggi, J. R´ıos, H. Rinc´on, R. Fern´andez-Alonso and C. Signoret, The lattice
  • structure of preradicals II: Partitions, J. Algebra Appl., 1(2) (2002), 201–214.
  • [14] R. P. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth and Brooks/Cole
  • Advanced Books and Software, Monterey, CA, 1986.
  • [15] B. Stenstr¨om, Rings of Quotients, Die Grundlehrem der Mathematischen Wissenschaften
  • 217, Springer-Verlag, New York-Heidelberg, 1975.
  • [16] B. Zimmermann-Huisgen and W. Zimmermann, On the sparsity of representations
  • of rings of pure global dimension zero, Trans. Amer. Math. Soc., 320(2)
  • (1990), 695–711.
There are 32 citations in total.

Details

Journal Section Articles
Authors

Rogelio Fernandez-alonso This is me

Dolors Herbera

Publication Date January 17, 2017
Published in Issue Year 2017 Volume: 21 Issue: 21

Cite

APA Fernandez-alonso, R., & Herbera, D. (2017). FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS. International Electronic Journal of Algebra, 21(21), 103-120. https://doi.org/10.24330/ieja.296155
AMA Fernandez-alonso R, Herbera D. FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS. IEJA. January 2017;21(21):103-120. doi:10.24330/ieja.296155
Chicago Fernandez-alonso, Rogelio, and Dolors Herbera. “FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS”. International Electronic Journal of Algebra 21, no. 21 (January 2017): 103-20. https://doi.org/10.24330/ieja.296155.
EndNote Fernandez-alonso R, Herbera D (January 1, 2017) FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS. International Electronic Journal of Algebra 21 21 103–120.
IEEE R. Fernandez-alonso and D. Herbera, “FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS”, IEJA, vol. 21, no. 21, pp. 103–120, 2017, doi: 10.24330/ieja.296155.
ISNAD Fernandez-alonso, Rogelio - Herbera, Dolors. “FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS”. International Electronic Journal of Algebra 21/21 (January 2017), 103-120. https://doi.org/10.24330/ieja.296155.
JAMA Fernandez-alonso R, Herbera D. FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS. IEJA. 2017;21:103–120.
MLA Fernandez-alonso, Rogelio and Dolors Herbera. “FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS”. International Electronic Journal of Algebra, vol. 21, no. 21, 2017, pp. 103-20, doi:10.24330/ieja.296155.
Vancouver Fernandez-alonso R, Herbera D. FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS. IEJA. 2017;21(21):103-20.