Research Article
BibTex RIS Cite
Year 2017, Volume: 21 Issue: 21, 180 - 197, 17.01.2017
https://doi.org/10.24330/ieja.296326

Abstract

References

  • [1] D. K. Basnet and J. Bhattacharyya, Nil clean index of rings, Int. Electron. J.
  • Algebra, 15 (2014), 145–156.
  • [2] S. Breaz, G. C˘alug˘areanu, P. Danchev and T. Micu, Nil-clean matrix rings,
  • Linear Algebra Appl., 439(10) (2013), 3115–3119.
  • [3] S. Breaz, P. Danchev and Y. Zhou, Rings in which every element is either a
  • sum or a difference of a nilpotent and an idempotent, J. Algebra Appl., 15(8) (2016), 1650148, 11 pp.
  • [4] S. Breaz and G. C. Modoi, Nil-clean companion matrices, Linear Algebra Appl., 489 (2016), 50–60.
  • [5] H. Chen, On uniquely clean rings, Comm. Algebra, 39(1) (2011), 189–198
  • [6] P. V. Danchev, Weakly UU rings, Tsukuba J. Math., 40(1) (2016), 101–118.
  • [7] P. V. Danchev and W. Wm. McGovern, Commutative weakly nil clean unital rings, J. Algebra, 425 (2015), 410-422.
  • [8] A. J. Diesl, Nil clean rings, J. Algebra, 383 (2013), 197–211.
  • [9] T. Y. Lam, A First Course in Noncommutative Rings, Second Edition, Grad.
  • Texts in Math., 131, Springer-Verlag, New York, 2001.
  • [10] T. K. Lee and Y. Zhou, Clean index of rings, Comm. Algebra, 40(3) (2012), 807–822.
  • [11] T. K. Lee and Y. Zhou, Rings of clean index 4 and applications, Comm. Algebra,
  • 41(1) (2013), 238–259.
  • [12] J. Ster, Nil clean involutions, arXiv preprint, (2015).

WEAKLY NIL-CLEAN INDEX AND UNIQUELY WEAKLY NIL-CLEAN RINGS

Year 2017, Volume: 21 Issue: 21, 180 - 197, 17.01.2017
https://doi.org/10.24330/ieja.296326

Abstract

  We introduce and study the weakly nil-clean index associated to a
ring. We also give some simple properties of this index and show that rings with
the weakly nil-clean index 1 are precisely those rings that are abelian weakly
nil-clean, thus showing that they coincide with uniquely weakly nil-clean rings.
Next, we define certain types of nilpotent elements and weakly nil-clean decompositions
by obtaining some results when the weakly nil-clean index is at
most 2 and, moreover, we somewhat characterize rings with weakly nil-clean
index 2. After that, we compute the weakly nil-clean index for T2(Zp), T3(Zp)
and M2(Z3), respectively, as well as we establish a result on the weakly nilclean
index of Mn(R) whenever R is a ring. Our results considerably extend
and correct the corresponding ones from [Int. Electron. J. Algebra 15(2014),
145–156]

References

  • [1] D. K. Basnet and J. Bhattacharyya, Nil clean index of rings, Int. Electron. J.
  • Algebra, 15 (2014), 145–156.
  • [2] S. Breaz, G. C˘alug˘areanu, P. Danchev and T. Micu, Nil-clean matrix rings,
  • Linear Algebra Appl., 439(10) (2013), 3115–3119.
  • [3] S. Breaz, P. Danchev and Y. Zhou, Rings in which every element is either a
  • sum or a difference of a nilpotent and an idempotent, J. Algebra Appl., 15(8) (2016), 1650148, 11 pp.
  • [4] S. Breaz and G. C. Modoi, Nil-clean companion matrices, Linear Algebra Appl., 489 (2016), 50–60.
  • [5] H. Chen, On uniquely clean rings, Comm. Algebra, 39(1) (2011), 189–198
  • [6] P. V. Danchev, Weakly UU rings, Tsukuba J. Math., 40(1) (2016), 101–118.
  • [7] P. V. Danchev and W. Wm. McGovern, Commutative weakly nil clean unital rings, J. Algebra, 425 (2015), 410-422.
  • [8] A. J. Diesl, Nil clean rings, J. Algebra, 383 (2013), 197–211.
  • [9] T. Y. Lam, A First Course in Noncommutative Rings, Second Edition, Grad.
  • Texts in Math., 131, Springer-Verlag, New York, 2001.
  • [10] T. K. Lee and Y. Zhou, Clean index of rings, Comm. Algebra, 40(3) (2012), 807–822.
  • [11] T. K. Lee and Y. Zhou, Rings of clean index 4 and applications, Comm. Algebra,
  • 41(1) (2013), 238–259.
  • [12] J. Ster, Nil clean involutions, arXiv preprint, (2015).
There are 17 citations in total.

Details

Subjects Mathematical Sciences
Journal Section Articles
Authors

Andrada Ciımpean This is me

Peter Danchev

Publication Date January 17, 2017
Published in Issue Year 2017 Volume: 21 Issue: 21

Cite

APA Ciımpean, A., & Danchev, P. (2017). WEAKLY NIL-CLEAN INDEX AND UNIQUELY WEAKLY NIL-CLEAN RINGS. International Electronic Journal of Algebra, 21(21), 180-197. https://doi.org/10.24330/ieja.296326
AMA Ciımpean A, Danchev P. WEAKLY NIL-CLEAN INDEX AND UNIQUELY WEAKLY NIL-CLEAN RINGS. IEJA. January 2017;21(21):180-197. doi:10.24330/ieja.296326
Chicago Ciımpean, Andrada, and Peter Danchev. “WEAKLY NIL-CLEAN INDEX AND UNIQUELY WEAKLY NIL-CLEAN RINGS”. International Electronic Journal of Algebra 21, no. 21 (January 2017): 180-97. https://doi.org/10.24330/ieja.296326.
EndNote Ciımpean A, Danchev P (January 1, 2017) WEAKLY NIL-CLEAN INDEX AND UNIQUELY WEAKLY NIL-CLEAN RINGS. International Electronic Journal of Algebra 21 21 180–197.
IEEE A. Ciımpean and P. Danchev, “WEAKLY NIL-CLEAN INDEX AND UNIQUELY WEAKLY NIL-CLEAN RINGS”, IEJA, vol. 21, no. 21, pp. 180–197, 2017, doi: 10.24330/ieja.296326.
ISNAD Ciımpean, Andrada - Danchev, Peter. “WEAKLY NIL-CLEAN INDEX AND UNIQUELY WEAKLY NIL-CLEAN RINGS”. International Electronic Journal of Algebra 21/21 (January 2017), 180-197. https://doi.org/10.24330/ieja.296326.
JAMA Ciımpean A, Danchev P. WEAKLY NIL-CLEAN INDEX AND UNIQUELY WEAKLY NIL-CLEAN RINGS. IEJA. 2017;21:180–197.
MLA Ciımpean, Andrada and Peter Danchev. “WEAKLY NIL-CLEAN INDEX AND UNIQUELY WEAKLY NIL-CLEAN RINGS”. International Electronic Journal of Algebra, vol. 21, no. 21, 2017, pp. 180-97, doi:10.24330/ieja.296326.
Vancouver Ciımpean A, Danchev P. WEAKLY NIL-CLEAN INDEX AND UNIQUELY WEAKLY NIL-CLEAN RINGS. IEJA. 2017;21(21):180-97.