Research Article
BibTex RIS Cite
Year 2018, Volume: 23 Issue: 23, 1 - 24, 11.01.2018
https://doi.org/10.24330/ieja.373631

Abstract

References

  • J. L. Alperin and L. Evens, Representations, resolutions and Quillen’s dimension theorem, J. Pure Appl. Algebra, 22(1) (1981), 1-9.
  • L. Héthelyi, E. Horváth, B. Külshammer and J. Murray, Central ideals and Cartan invariants of symmetric algebras, J. Algebra, 293(1) (2005), 243-260.
  • R. Kessar, On blocks stably equivalent to a quantum complete intersection of dimension 9 in characteristic 3 and a case of the abelian defect group conjecture, J. London Math. Soc., 85(2) (2012), 491-510.
  • M. Kiyota, On 3-blocks with an elementary abelian defect group of order 9, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31(1) (1984), 33-58.
  • B. Külshammer, Bemerkungen über die Gruppenalgebra als symmetrische Algebra II, J. Algebra, 75(1) (1982), 59-69.
  • B. Külshammer, Symmetric local algebras and small blocks of finite groups, J. Algebra, 88(1) (1984), 190-195.
  • B. Külshammer, Crossed products and blocks with normal defect groups, Comm. Algebra, 13(1) (1985), 147-168.
  • B. Külshammer, Group-theoretical descriptions of ring-theoretical invariants of group algebras, in Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991), Progr. Math., 95, Birkhäuser, Basel, (1991), 425- 442.
  • B. Külshammer, Lectures on Block Theory, London Mathematical Society Lecture Note Series, 161, Cambridge University Press, Cambridge, 1991.
  • L. Puig and Y. Usami, Perfect isometries for blocks with abelian defect groups and Klein four inertial quotients, J. Algebra, 160(1) (1993), 192-225.
  • S. Reinhardt, Eine Klasse von 3-Blöcken mit Defekt 2, Master’s thesis, Jena 2015.

Algebras related to a class of 3-blocks of defect 2

Year 2018, Volume: 23 Issue: 23, 1 - 24, 11.01.2018
https://doi.org/10.24330/ieja.373631

Abstract

Motivated by a problem concerning the structure of certain 3-
blocks of defect 2 in finite groups we investigate a class of local algebras of
dimension 9 over a field of characteristic 3. In particular, we compute the
complexity of the unique simple module for any such algebra.

References

  • J. L. Alperin and L. Evens, Representations, resolutions and Quillen’s dimension theorem, J. Pure Appl. Algebra, 22(1) (1981), 1-9.
  • L. Héthelyi, E. Horváth, B. Külshammer and J. Murray, Central ideals and Cartan invariants of symmetric algebras, J. Algebra, 293(1) (2005), 243-260.
  • R. Kessar, On blocks stably equivalent to a quantum complete intersection of dimension 9 in characteristic 3 and a case of the abelian defect group conjecture, J. London Math. Soc., 85(2) (2012), 491-510.
  • M. Kiyota, On 3-blocks with an elementary abelian defect group of order 9, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31(1) (1984), 33-58.
  • B. Külshammer, Bemerkungen über die Gruppenalgebra als symmetrische Algebra II, J. Algebra, 75(1) (1982), 59-69.
  • B. Külshammer, Symmetric local algebras and small blocks of finite groups, J. Algebra, 88(1) (1984), 190-195.
  • B. Külshammer, Crossed products and blocks with normal defect groups, Comm. Algebra, 13(1) (1985), 147-168.
  • B. Külshammer, Group-theoretical descriptions of ring-theoretical invariants of group algebras, in Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991), Progr. Math., 95, Birkhäuser, Basel, (1991), 425- 442.
  • B. Külshammer, Lectures on Block Theory, London Mathematical Society Lecture Note Series, 161, Cambridge University Press, Cambridge, 1991.
  • L. Puig and Y. Usami, Perfect isometries for blocks with abelian defect groups and Klein four inertial quotients, J. Algebra, 160(1) (1993), 192-225.
  • S. Reinhardt, Eine Klasse von 3-Blöcken mit Defekt 2, Master’s thesis, Jena 2015.
There are 11 citations in total.

Details

Journal Section Articles
Authors

Burkhard Külshammer

Pierre Landrock This is me

Stephanie Reinhardt This is me

Publication Date January 11, 2018
Published in Issue Year 2018 Volume: 23 Issue: 23

Cite

APA Külshammer, B., Landrock, P., & Reinhardt, S. (2018). Algebras related to a class of 3-blocks of defect 2. International Electronic Journal of Algebra, 23(23), 1-24. https://doi.org/10.24330/ieja.373631
AMA Külshammer B, Landrock P, Reinhardt S. Algebras related to a class of 3-blocks of defect 2. IEJA. January 2018;23(23):1-24. doi:10.24330/ieja.373631
Chicago Külshammer, Burkhard, Pierre Landrock, and Stephanie Reinhardt. “Algebras Related to a Class of 3-Blocks of Defect 2”. International Electronic Journal of Algebra 23, no. 23 (January 2018): 1-24. https://doi.org/10.24330/ieja.373631.
EndNote Külshammer B, Landrock P, Reinhardt S (January 1, 2018) Algebras related to a class of 3-blocks of defect 2. International Electronic Journal of Algebra 23 23 1–24.
IEEE B. Külshammer, P. Landrock, and S. Reinhardt, “Algebras related to a class of 3-blocks of defect 2”, IEJA, vol. 23, no. 23, pp. 1–24, 2018, doi: 10.24330/ieja.373631.
ISNAD Külshammer, Burkhard et al. “Algebras Related to a Class of 3-Blocks of Defect 2”. International Electronic Journal of Algebra 23/23 (January 2018), 1-24. https://doi.org/10.24330/ieja.373631.
JAMA Külshammer B, Landrock P, Reinhardt S. Algebras related to a class of 3-blocks of defect 2. IEJA. 2018;23:1–24.
MLA Külshammer, Burkhard et al. “Algebras Related to a Class of 3-Blocks of Defect 2”. International Electronic Journal of Algebra, vol. 23, no. 23, 2018, pp. 1-24, doi:10.24330/ieja.373631.
Vancouver Külshammer B, Landrock P, Reinhardt S. Algebras related to a class of 3-blocks of defect 2. IEJA. 2018;23(23):1-24.