Research Article
BibTex RIS Cite

LOCAL COMPARABILITY OF EXCHANGE IDEALS

Year 2019, Volume: 25 Issue: 25, 1 - 11, 08.01.2019
https://doi.org/10.24330/ieja.504095

Abstract

An exchange ideal $I$ of a ring $R$ is locally comparable if
for every regular $x\in I$ there exists a right or left invertible $u\in 1+I$ such
that $x=xux$. We prove that every matrix extension
of an exchange locally comparable ideal is locally comparable. We thereby
prove that every square regular matrix over such ideal admits a
diagonal reduction.

References

  • P. Ara, Extensions of exchange rings, J. Algebra, 197(2) (1997), 409-423.
  • H. Chen, Elements in one-sided unit regular rings, Comm. Algebra, 25(8) (1997), 2517-2529.
  • H. Chen, On generalized stable ideals, Comm. Algebra, 38(10) (2010), 3567-3579.
  • H. Chen, On quasi-stable exchange ideals, J. Korean Math. Soc., 47(1) (2010), 1-15.
  • H. Chen, Rings Related to Stable Range Conditions, Series in Algebra, 11, World Scienti c Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.
  • C. Huang, Refi nement rings, exchange property and comparability, Bull. Korean Math. Soc., 48(3) (2011), 455-468.
  • D. Khurana, T. Y. Lam and P. P. Nielsen, Exchange elements in rings, and the equation XA-BX = I, Trans. Amer. Math. Soc., 369(1) (2017), 495-516.
  • F. Perera, Lifting units modulo exchange ideals and C*-algebras with real rank zero, J. Reine Angew. Math., 522 (2000), 51-62.
Year 2019, Volume: 25 Issue: 25, 1 - 11, 08.01.2019
https://doi.org/10.24330/ieja.504095

Abstract

References

  • P. Ara, Extensions of exchange rings, J. Algebra, 197(2) (1997), 409-423.
  • H. Chen, Elements in one-sided unit regular rings, Comm. Algebra, 25(8) (1997), 2517-2529.
  • H. Chen, On generalized stable ideals, Comm. Algebra, 38(10) (2010), 3567-3579.
  • H. Chen, On quasi-stable exchange ideals, J. Korean Math. Soc., 47(1) (2010), 1-15.
  • H. Chen, Rings Related to Stable Range Conditions, Series in Algebra, 11, World Scienti c Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.
  • C. Huang, Refi nement rings, exchange property and comparability, Bull. Korean Math. Soc., 48(3) (2011), 455-468.
  • D. Khurana, T. Y. Lam and P. P. Nielsen, Exchange elements in rings, and the equation XA-BX = I, Trans. Amer. Math. Soc., 369(1) (2017), 495-516.
  • F. Perera, Lifting units modulo exchange ideals and C*-algebras with real rank zero, J. Reine Angew. Math., 522 (2000), 51-62.
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Handan Kose

Yosum Kurtulmaz This is me

Huanyin Chen

Publication Date January 8, 2019
Published in Issue Year 2019 Volume: 25 Issue: 25

Cite

APA Kose, H., Kurtulmaz, Y., & Chen, H. (2019). LOCAL COMPARABILITY OF EXCHANGE IDEALS. International Electronic Journal of Algebra, 25(25), 1-11. https://doi.org/10.24330/ieja.504095
AMA Kose H, Kurtulmaz Y, Chen H. LOCAL COMPARABILITY OF EXCHANGE IDEALS. IEJA. January 2019;25(25):1-11. doi:10.24330/ieja.504095
Chicago Kose, Handan, Yosum Kurtulmaz, and Huanyin Chen. “LOCAL COMPARABILITY OF EXCHANGE IDEALS”. International Electronic Journal of Algebra 25, no. 25 (January 2019): 1-11. https://doi.org/10.24330/ieja.504095.
EndNote Kose H, Kurtulmaz Y, Chen H (January 1, 2019) LOCAL COMPARABILITY OF EXCHANGE IDEALS. International Electronic Journal of Algebra 25 25 1–11.
IEEE H. Kose, Y. Kurtulmaz, and H. Chen, “LOCAL COMPARABILITY OF EXCHANGE IDEALS”, IEJA, vol. 25, no. 25, pp. 1–11, 2019, doi: 10.24330/ieja.504095.
ISNAD Kose, Handan et al. “LOCAL COMPARABILITY OF EXCHANGE IDEALS”. International Electronic Journal of Algebra 25/25 (January 2019), 1-11. https://doi.org/10.24330/ieja.504095.
JAMA Kose H, Kurtulmaz Y, Chen H. LOCAL COMPARABILITY OF EXCHANGE IDEALS. IEJA. 2019;25:1–11.
MLA Kose, Handan et al. “LOCAL COMPARABILITY OF EXCHANGE IDEALS”. International Electronic Journal of Algebra, vol. 25, no. 25, 2019, pp. 1-11, doi:10.24330/ieja.504095.
Vancouver Kose H, Kurtulmaz Y, Chen H. LOCAL COMPARABILITY OF EXCHANGE IDEALS. IEJA. 2019;25(25):1-11.