K. I. Beidar and A. V. Mikhalev, Generalized polynomial identities and rings
that are sums of two subrings, Algebra i Logika, 34(1) (1995), 3-11.
L. A. Bokut, Imbeddings into simple associative algebras, Algebra i Logika,
15(2) (1976), 117-142.
B. Felzenszwalb, A. Giambruno and G. Leal, On rings which are sums of two
PI-subrings: a combinatorial approach, Pacic J. Math., 209(1) (2003), 17-30.
O. H. Kegel, Zur Nilpotenz gewisser assoziativer Ringe, Math. Ann., 149
(1962/63), 258-260.
O. H. Kegel, On rings that are sums of two subrings, J. Algebra, 1 (1964),
103-109.
A. V. Kelarev, A sum of two locally nilpotent rings may be not nil, Arch. Math.
(Basel), 60 (1993), 431-435.
M. Kepczyk, Note on algebras which are sums of two PI subalgebras, J. Algebra
Appl., 14 (2015), 1550149 (10 pp).
M. Kepczyk, A note on algebras that are sums of two subalgebras, Canad.
Math. Bull., 59 (2016), 340-345.
M. Kepczyk, A ring which is a sum of two PI subrings is always a PI ring,
Israel J. Math., 221(1) (2017), 481-487.
M. Kepczyk and E. R. Puczylowski, On radicals of rings which are sums of
two subrings, Arc. Math. (Basel), 66(1) (1996), 8-12.
M. Kepczyk and E. R. Puczylowski, Rings which are sums of two subrings,
Ring Theory (Miskolc, 1996), J. Pure App. Algebra, 133(1-2) (1998), 151-162.
M. Kepczyk and E. R. Puczylowski, Rings which are sums of two subrings
satisfying polynomial identities, Comm. Algebra, 29(5) (2001), 2059-2065.
M. Kepczyk and E. R. Puczylowski, On the structure of rings which are sums
of two subrings, Arc. Math. (Basel), 83(5) (2004), 429-436.
G. Kothe, Die Struktur der Ringe, deren Restklassenring nach dem Radikal
vollstanding irreduzibel ist., Math. Z., 32 (1930), 161-186.
A. Smoktunowicz, On some results related to Kothe's conjecture, Serdica Math.
J., 27 (2001), 159-170.
A. Smoktunowicz, A simple nil ring exists, Comm. Algebra, 30(1) (2002), 27-
59.
B. Stenstrom, Rings of Quotients: Die Grundlehren der Mathematischen Wissenschaften,
Band 217, An introduction to methods of ring theory, Springer-
Verlag, New York-Heidelberg, 1975.
Year 2019,
Volume: 26 Issue: 26, 131 - 144, 11.07.2019
K. I. Beidar and A. V. Mikhalev, Generalized polynomial identities and rings
that are sums of two subrings, Algebra i Logika, 34(1) (1995), 3-11.
L. A. Bokut, Imbeddings into simple associative algebras, Algebra i Logika,
15(2) (1976), 117-142.
B. Felzenszwalb, A. Giambruno and G. Leal, On rings which are sums of two
PI-subrings: a combinatorial approach, Pacic J. Math., 209(1) (2003), 17-30.
O. H. Kegel, Zur Nilpotenz gewisser assoziativer Ringe, Math. Ann., 149
(1962/63), 258-260.
O. H. Kegel, On rings that are sums of two subrings, J. Algebra, 1 (1964),
103-109.
A. V. Kelarev, A sum of two locally nilpotent rings may be not nil, Arch. Math.
(Basel), 60 (1993), 431-435.
M. Kepczyk, Note on algebras which are sums of two PI subalgebras, J. Algebra
Appl., 14 (2015), 1550149 (10 pp).
M. Kepczyk, A note on algebras that are sums of two subalgebras, Canad.
Math. Bull., 59 (2016), 340-345.
M. Kepczyk, A ring which is a sum of two PI subrings is always a PI ring,
Israel J. Math., 221(1) (2017), 481-487.
M. Kepczyk and E. R. Puczylowski, On radicals of rings which are sums of
two subrings, Arc. Math. (Basel), 66(1) (1996), 8-12.
M. Kepczyk and E. R. Puczylowski, Rings which are sums of two subrings,
Ring Theory (Miskolc, 1996), J. Pure App. Algebra, 133(1-2) (1998), 151-162.
M. Kepczyk and E. R. Puczylowski, Rings which are sums of two subrings
satisfying polynomial identities, Comm. Algebra, 29(5) (2001), 2059-2065.
M. Kepczyk and E. R. Puczylowski, On the structure of rings which are sums
of two subrings, Arc. Math. (Basel), 83(5) (2004), 429-436.
G. Kothe, Die Struktur der Ringe, deren Restklassenring nach dem Radikal
vollstanding irreduzibel ist., Math. Z., 32 (1930), 161-186.
A. Smoktunowicz, On some results related to Kothe's conjecture, Serdica Math.
J., 27 (2001), 159-170.
A. Smoktunowicz, A simple nil ring exists, Comm. Algebra, 30(1) (2002), 27-
59.
B. Stenstrom, Rings of Quotients: Die Grundlehren der Mathematischen Wissenschaften,
Band 217, An introduction to methods of ring theory, Springer-
Verlag, New York-Heidelberg, 1975.
Kosan, M. T., & Zemlicka, J. (2019). ON FINITE DIMENSIONAL ALGEBRAS WHICH ARE SUMS OF TWO SUBALGEBRAS. International Electronic Journal of Algebra, 26(26), 131-144. https://doi.org/10.24330/ieja.587018
AMA
Kosan MT, Zemlicka J. ON FINITE DIMENSIONAL ALGEBRAS WHICH ARE SUMS OF TWO SUBALGEBRAS. IEJA. July 2019;26(26):131-144. doi:10.24330/ieja.587018
Chicago
Kosan, M. Tamer, and Jan Zemlicka. “ON FINITE DIMENSIONAL ALGEBRAS WHICH ARE SUMS OF TWO SUBALGEBRAS”. International Electronic Journal of Algebra 26, no. 26 (July 2019): 131-44. https://doi.org/10.24330/ieja.587018.
EndNote
Kosan MT, Zemlicka J (July 1, 2019) ON FINITE DIMENSIONAL ALGEBRAS WHICH ARE SUMS OF TWO SUBALGEBRAS. International Electronic Journal of Algebra 26 26 131–144.
IEEE
M. T. Kosan and J. Zemlicka, “ON FINITE DIMENSIONAL ALGEBRAS WHICH ARE SUMS OF TWO SUBALGEBRAS”, IEJA, vol. 26, no. 26, pp. 131–144, 2019, doi: 10.24330/ieja.587018.
ISNAD
Kosan, M. Tamer - Zemlicka, Jan. “ON FINITE DIMENSIONAL ALGEBRAS WHICH ARE SUMS OF TWO SUBALGEBRAS”. International Electronic Journal of Algebra 26/26 (July 2019), 131-144. https://doi.org/10.24330/ieja.587018.
JAMA
Kosan MT, Zemlicka J. ON FINITE DIMENSIONAL ALGEBRAS WHICH ARE SUMS OF TWO SUBALGEBRAS. IEJA. 2019;26:131–144.
MLA
Kosan, M. Tamer and Jan Zemlicka. “ON FINITE DIMENSIONAL ALGEBRAS WHICH ARE SUMS OF TWO SUBALGEBRAS”. International Electronic Journal of Algebra, vol. 26, no. 26, 2019, pp. 131-44, doi:10.24330/ieja.587018.
Vancouver
Kosan MT, Zemlicka J. ON FINITE DIMENSIONAL ALGEBRAS WHICH ARE SUMS OF TWO SUBALGEBRAS. IEJA. 2019;26(26):131-44.