CHARACTERIZATIONS OF SOME CLASSES OF RINGS VIA LOCALLY SUPPLEMENTED MODULES
Year 2020,
Volume: 27 Issue: 27, 178 - 193, 07.01.2020
Farid Kourki
Rachid Tribak
Abstract
We introduce the notion of locally supplemented modules (i.e., modules for which every finitely generated submodule is supplemented). We show that a module $M$ is locally supplemented if and only if $M$ is a sum of local submodules. We characterize several classes of rings in terms of locally supplemented modules. Among others, we prove that a ring $R$ is a Camillo ring if and only if every finitely embedded $R$-module is locally supplemented. It is also shown that a ring $R$ is a Gelfand ring if and only if every $R$-module having a finite Goldie dimension is locally supplemented.
References
- D. D. Anderson and V. P. Camillo, Commutative rings whose elements are a
sum of a unit and idempotent, Comm. Algebra, 30(7) (2002), 3327-3336.
- M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra,
Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont.,
1969.
- I. Beck, $\Sigma$-injective modules, J. Algebra, 21(2) (1972), 232-249.
- N. Bourbaki, Elements de Mathematique, Algebre Commutative, Chapitres 1
et 2, Masson, Paris, 1985.
- E. Buyukasik and C. Lomp, Rings whose modules are weakly supplemented are
perfect. Applications to certain ring extensions, Math. Scand., 105(1) (2009),
25-30.
- V. Camillo, Homological independence of injective hulls of simple modules over
commutative rings, Comm. Algebra, 6(14) (1978), 1459-1469.
- J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Supplements
and Projectivity in Module Theory, Frontiers in Mathematics, Birkhauser Verlag,
Basel, 2006.
- F. Couchot, Indecomposable modules and Gelfand rings, Comm. Algebra, 35(1)
(2007), 231-241.
- A. Facchini, Module Theory, Endomorphism rings and direct sum decompositions
in some classes of modules, Progress in Mathematics, 167, Birkhauser
Verlag, Basel, 1998.
- C. Faith, Minimal cogenerators over Osofsky and Camillo rings, Advances in
Ring Theory (Granville, OH, 1996), Trends Math., Birkhauser Boston, Boston,
MA, (1997), 105-118.
- A. I. Generalov, $\omega$-cohigh purity in a category of modules, Mat. Zametki, 33(5)
(1983), 402-408; translation from Mat. Zametki, 33(5) (1983), 785-796.
- T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics,
189, Springer-Verlag, New York, 1999.
- S. McAdam, Deep decompositions of modules, Comm. Algebra, 26(12) (1998),
3953-3967.
- S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, London
Mathematical Society Lecture Note Series, 147, Cambridge University Press,
Cambridge, 1990.
- D. W. Sharpe and P. Vamos, Injective Modules, Cambridge Tracts in Mathematics
and Mathematical Physics, No. 62, Cambridge University Press,
London-New York, 1972.
- R. C. Shock, Dual generalizations of the artinian and noetherian conditions,
Pacic J. Math., 54(2) (1974), 227-235.
- T. S. Shores, Decompositions of finitely generated modules, Proc. Amer. Math.
Soc., 30(3) (1971), 445-450.
- P. Vamos, The dual of the notion of "finitely generated", J. London Math.
Soc., 43(1) (1968), 643-646.
- P. Vamos, Classical rings, J. Algebra, 34(1) (1975), 114-129.
- H. Zoschinger, Komplementierte Moduln uber Dedekindringen, J. Algebra,
29(1) (1974), 42-56.
- H. Zoschinger, Gelfandringe und koabgeschlossene Untermoduln, Bayer. Akad.
Wiss. Math.-Natur. KI. Sitzungsber., 3 (1982), 43-70.
Year 2020,
Volume: 27 Issue: 27, 178 - 193, 07.01.2020
Farid Kourki
Rachid Tribak
References
- D. D. Anderson and V. P. Camillo, Commutative rings whose elements are a
sum of a unit and idempotent, Comm. Algebra, 30(7) (2002), 3327-3336.
- M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra,
Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont.,
1969.
- I. Beck, $\Sigma$-injective modules, J. Algebra, 21(2) (1972), 232-249.
- N. Bourbaki, Elements de Mathematique, Algebre Commutative, Chapitres 1
et 2, Masson, Paris, 1985.
- E. Buyukasik and C. Lomp, Rings whose modules are weakly supplemented are
perfect. Applications to certain ring extensions, Math. Scand., 105(1) (2009),
25-30.
- V. Camillo, Homological independence of injective hulls of simple modules over
commutative rings, Comm. Algebra, 6(14) (1978), 1459-1469.
- J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Supplements
and Projectivity in Module Theory, Frontiers in Mathematics, Birkhauser Verlag,
Basel, 2006.
- F. Couchot, Indecomposable modules and Gelfand rings, Comm. Algebra, 35(1)
(2007), 231-241.
- A. Facchini, Module Theory, Endomorphism rings and direct sum decompositions
in some classes of modules, Progress in Mathematics, 167, Birkhauser
Verlag, Basel, 1998.
- C. Faith, Minimal cogenerators over Osofsky and Camillo rings, Advances in
Ring Theory (Granville, OH, 1996), Trends Math., Birkhauser Boston, Boston,
MA, (1997), 105-118.
- A. I. Generalov, $\omega$-cohigh purity in a category of modules, Mat. Zametki, 33(5)
(1983), 402-408; translation from Mat. Zametki, 33(5) (1983), 785-796.
- T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics,
189, Springer-Verlag, New York, 1999.
- S. McAdam, Deep decompositions of modules, Comm. Algebra, 26(12) (1998),
3953-3967.
- S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, London
Mathematical Society Lecture Note Series, 147, Cambridge University Press,
Cambridge, 1990.
- D. W. Sharpe and P. Vamos, Injective Modules, Cambridge Tracts in Mathematics
and Mathematical Physics, No. 62, Cambridge University Press,
London-New York, 1972.
- R. C. Shock, Dual generalizations of the artinian and noetherian conditions,
Pacic J. Math., 54(2) (1974), 227-235.
- T. S. Shores, Decompositions of finitely generated modules, Proc. Amer. Math.
Soc., 30(3) (1971), 445-450.
- P. Vamos, The dual of the notion of "finitely generated", J. London Math.
Soc., 43(1) (1968), 643-646.
- P. Vamos, Classical rings, J. Algebra, 34(1) (1975), 114-129.
- H. Zoschinger, Komplementierte Moduln uber Dedekindringen, J. Algebra,
29(1) (1974), 42-56.
- H. Zoschinger, Gelfandringe und koabgeschlossene Untermoduln, Bayer. Akad.
Wiss. Math.-Natur. KI. Sitzungsber., 3 (1982), 43-70.