Research Article
BibTex RIS Cite

The G-Drazin inverse of anti-triangular block-operator matrices

Year 2024, Early Access, 1 - 8
https://doi.org/10.24330/ieja.1587216

Abstract

In this paper we investigate the g-Drazin invertibility of an anti-triangular block-operator matrix $\left(
\begin{array}{cc}
E&I\\
F&0
\end{array}
\right)$ with $F^{\pi}EF^d=0$ and $F^{\pi}EF^iE=0$ for all $i\in {\mathbb N}$. This generalizes the main results of [Guo, Zou and Chen, Hacet. J. Math. Stat., 49(3)(2020), 1134-1149] and [Chen and Sheibani, Appl. Math. Comput., 463(2024), 128368 (12 pp)] to a wider case.

References

  • C. Bu, K. Zhang and J. Zhao, Representation of the Drazin inverse on solution of a class singular differential equations, Linear Multilinear Algebra, 59(8) (2011), 863-877.
  • H. Chen and M. Sheibani, The g-Drazin inverses of special operator matrices, Oper. Matrices, 15(1) (2021), 151-162.
  • H. Chen and M. Sheibani, The g-Drazin inverses of anti-triangular block operator matrices, Appl. Math. Comput., 463 (2024), 128368 (12 pp).
  • C. Deng and Y. Wei, A note on the Drazin inverse of an anti-triangular matrix, Linear Algebra Appl., 431(10) (2009), 1910-1922.
  • D. S. Djordjevic and P. S. Stanimirovic, On the generalized Drazin inverse and generalized resolvent}, Czechoslovak Math. J., 51 (2001), 617-634.
  • D. S. Djordjevic and Y. Wei, Additive results for the generalized Drazin inverse, J. Aust. Math. Soc., 73(1) (2002), 115-125.
  • L. Guo, H. Zou and J. Chen, The generalized Drazin inverse of operator matrices, Hacet. J. Math. Stat., 49(3) (2020), 1134-1149.
  • Y. Liao, J. Chen and J. Cui, Cline's formula for the generalized Drazin inverse, Bull. Malays. Math. Sci. Soc. (2), 37(1) (2014), 37-42.
  • M. Moucouf, $\mathcal P$-canonical forms and Drazin inverses of matrices, Filomat, 38(7) (2024), 2399-2417.
  • D. Zhang, Representations for generalized Drazin inverse of operator matrices over a Banach space, Turkish J. Math., 40(2) (2016), 428-437.
  • D. Zhang and D. Mosic, Explicit formulae for the generalized Drazin inverse of block matrices over a Banach algebra, Filomat, 32(17) (2018), 5907-5917.
  • S. Zriaa and M. Moucouf, The explicit formulas of the Drazin inverse of matrices and its $n$th powers, Rend. Circ. Mat. Palermo (2), 73(2) (2024), 603-612.
Year 2024, Early Access, 1 - 8
https://doi.org/10.24330/ieja.1587216

Abstract

References

  • C. Bu, K. Zhang and J. Zhao, Representation of the Drazin inverse on solution of a class singular differential equations, Linear Multilinear Algebra, 59(8) (2011), 863-877.
  • H. Chen and M. Sheibani, The g-Drazin inverses of special operator matrices, Oper. Matrices, 15(1) (2021), 151-162.
  • H. Chen and M. Sheibani, The g-Drazin inverses of anti-triangular block operator matrices, Appl. Math. Comput., 463 (2024), 128368 (12 pp).
  • C. Deng and Y. Wei, A note on the Drazin inverse of an anti-triangular matrix, Linear Algebra Appl., 431(10) (2009), 1910-1922.
  • D. S. Djordjevic and P. S. Stanimirovic, On the generalized Drazin inverse and generalized resolvent}, Czechoslovak Math. J., 51 (2001), 617-634.
  • D. S. Djordjevic and Y. Wei, Additive results for the generalized Drazin inverse, J. Aust. Math. Soc., 73(1) (2002), 115-125.
  • L. Guo, H. Zou and J. Chen, The generalized Drazin inverse of operator matrices, Hacet. J. Math. Stat., 49(3) (2020), 1134-1149.
  • Y. Liao, J. Chen and J. Cui, Cline's formula for the generalized Drazin inverse, Bull. Malays. Math. Sci. Soc. (2), 37(1) (2014), 37-42.
  • M. Moucouf, $\mathcal P$-canonical forms and Drazin inverses of matrices, Filomat, 38(7) (2024), 2399-2417.
  • D. Zhang, Representations for generalized Drazin inverse of operator matrices over a Banach space, Turkish J. Math., 40(2) (2016), 428-437.
  • D. Zhang and D. Mosic, Explicit formulae for the generalized Drazin inverse of block matrices over a Banach algebra, Filomat, 32(17) (2018), 5907-5917.
  • S. Zriaa and M. Moucouf, The explicit formulas of the Drazin inverse of matrices and its $n$th powers, Rend. Circ. Mat. Palermo (2), 73(2) (2024), 603-612.
There are 12 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

F. Zamiri, This is me

A. Ghaffari This is me

Marjan Sheibani Abdolyousefi

Early Pub Date November 18, 2024
Publication Date
Submission Date March 11, 2024
Acceptance Date October 30, 2024
Published in Issue Year 2024 Early Access

Cite

APA Zamiri, F., Ghaffari, A., & Sheibani Abdolyousefi, M. (2024). The G-Drazin inverse of anti-triangular block-operator matrices. International Electronic Journal of Algebra1-8. https://doi.org/10.24330/ieja.1587216
AMA Zamiri, F, Ghaffari A, Sheibani Abdolyousefi M. The G-Drazin inverse of anti-triangular block-operator matrices. IEJA. Published online November 1, 2024:1-8. doi:10.24330/ieja.1587216
Chicago Zamiri, F., A. Ghaffari, and Marjan Sheibani Abdolyousefi. “The G-Drazin Inverse of Anti-Triangular Block-Operator Matrices”. International Electronic Journal of Algebra, November (November 2024), 1-8. https://doi.org/10.24330/ieja.1587216.
EndNote Zamiri, F, Ghaffari A, Sheibani Abdolyousefi M (November 1, 2024) The G-Drazin inverse of anti-triangular block-operator matrices. International Electronic Journal of Algebra 1–8.
IEEE F. Zamiri, A. Ghaffari, and M. Sheibani Abdolyousefi, “The G-Drazin inverse of anti-triangular block-operator matrices”, IEJA, pp. 1–8, November 2024, doi: 10.24330/ieja.1587216.
ISNAD Zamiri,, F. et al. “The G-Drazin Inverse of Anti-Triangular Block-Operator Matrices”. International Electronic Journal of Algebra. November 2024. 1-8. https://doi.org/10.24330/ieja.1587216.
JAMA Zamiri, F, Ghaffari A, Sheibani Abdolyousefi M. The G-Drazin inverse of anti-triangular block-operator matrices. IEJA. 2024;:1–8.
MLA Zamiri, F. et al. “The G-Drazin Inverse of Anti-Triangular Block-Operator Matrices”. International Electronic Journal of Algebra, 2024, pp. 1-8, doi:10.24330/ieja.1587216.
Vancouver Zamiri, F, Ghaffari A, Sheibani Abdolyousefi M. The G-Drazin inverse of anti-triangular block-operator matrices. IEJA. 2024:1-8.