Research Article
BibTex RIS Cite
Year 2025, Volume: 37 Issue: 37, 14 - 35, 14.01.2025
https://doi.org/10.24330/ieja.1615640

Abstract

References

  • M. Abdulla and A. Badawi, On the dot product graph of a commutative ring II, Int. Electron. J. Algebra, 28 (2020), 61-74.
  • S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra, 274 (2004), 847-855.
  • D. F. Anderson, A. Frazier, A. Lauve and P. S. Livingston, The zero-divisor graph of a commutative ring, II, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, Basel, 220 (2001), 61-72.
  • D. F. Anderson and J. D. LaGrange, Some remarks on the compressed zero-divisor graph, J. Algebra, 447 (2016), 297-321.
  • D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(2) (1999), 434-447.
  • G. Arunkumar, P. J. Cameron, T. Kavaskar and T. Tamizh Chelvam, Induced subgraphs of zero-divisor graphs, Discrete Math., 346(10) (2023), 113580 (9 pp).
  • M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
  • M. Axtell and J. Stickles, Irreducible divisor graphs in commutative rings with zero divisors, Comm. Algebra, 36(5) (2008), 1883-1893.
  • I. Beck, Coloring of commutative rings, J. Algebra, 116(1) (1988), 208-226.
  • M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl., 10(4) (2011), 741-753.
  • J. Coykendall and J. Maney, Irreducible divisor graphs, Comm. Algebra, 35(3) (2007), 885-895.
  • F. R. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum, 65(2) (2002), 206-214.
  • R. Halas and M. Jukl, On Beck's coloring of posets, Discrete Math., 309(13) (2009), 4584-4589.
  • T. W. Hungerford, On the structure of principal ideal rings, Pacific J. Math., 25 (1968), 543-547.
  • V. Joshi and A. Khiste, The zero divisor graphs of Boolean posets, Math. Slovaca, 64(2) (2014), 511-519.
  • C. F. Kimball and J. D. LaGrange, The idempotent-divisor graphs of a commutative ring, Comm. Algebra, 46(9) (2018), 3899-3912.
  • J. D. LaGrange, Complemented zero-divisor graphs and Boolean rings, J. Algebra, 315(2) (2007), 600-611.
  • J. D. LaGrange, The $x$-divisor pseudographs of a commutative groupoid, Int. Electron. J. Algebra, 22 (2017), 62-77.
  • J. D. LaGrange, Divisor graphs of a commutative ring, in Advances in Commutative Algebra, Trends in Mathematics, Birkhauser/Springer, Singapore, (2019), 217-244.
  • J. D. LaGrange, Divisor graphs and isotopy invariants of commutative quasigroups, J. Combin. Theory Ser. A, 187 (2022), 105577 (16 pp).
  • J. D. LaGrange, Intervals of posets of a zero-divisor graph, Math. Slovaca, 74(4) (2024), 803-818.
  • D. Lu and T. Wu, The zero-divisor graphs which are uniquely determined by neighborhoods, Comm. Algebra, 35(12) (2007), 3855-3864.
  • D. Lu and T. Wu, The zero-divisor graphs of posets and an application to semigroups, Graphs Combin., 26(6) (2010), 793-804.
  • A. Mohammadian, On zero-divisor graphs of Boolean rings, Pacific J. Math., 251(2) (2011), 375-383.
  • C. P. Mooney, $\tau$-Irreducible divisor graphs in commutative rings with zero-divisors, Int. Electron. J. Algebra, 20 (2016), 45-69.
  • J. D. Monk, Introduction to Set Theory, McGraw-Hill Book Co., New York-London-Sydney, 1969.
  • S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra, 30(7) (2002), 3533-3558.
  • A. Sharma and D. K. Basnet, Nil clean divisor graph, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 41(1) (2021), 146-153.
  • M. Tavakkoli, A. Borumand Saeid and N. Shajareh Poursalavati, Classification of posets using zero-divisor graphs, Math. Slovaca, 68(1) (2018), 21-32.

On divisor graphs of valuation domains and local Artinian principal ideal rings

Year 2025, Volume: 37 Issue: 37, 14 - 35, 14.01.2025
https://doi.org/10.24330/ieja.1615640

Abstract

For an element $x$ of a commutative ring $R$, let $\Gamma_x(R)$ be the graph whose vertices are the elements of $R$ that divide $x$ such that distinct vertices $r$ and $s$ are adjacent if and only if $rs=x$. If $x$ is a nonzero nonirreducible nonunit of an integral domain $R$, then $\Gamma_x^\mathcal{C}(R)$ is the graph whose vertices are the associate classes of divisors of $x$ that are neither units nor associates of $x$ such that distinct vertices $A$ and $B$ are adjacent if and only if $rs$ divides $x$ for some (and hence every) $r\in A$ and $s\in B$. The graphs $\Gamma_x(R)$ are considered when $R$ is a local Artinian principal ideal ring, and $\Gamma_x^\mathcal{C}(R)$ is examined when $R$ is a valuation domain. For example, it is shown that a finite local ring $R$ is a principal ideal ring if and only if there exists $x\in R$ such that every connected component of $\Gamma_x(R)$ is a star graph of a prescribed cardinality. Moreover, it is proved that an integral domain $R$ is a discrete valuation ring if and only if its collection of graphs $\Gamma_x^\mathcal{C}(R)$ consists precisely of a single-vertex graph, along with every (up to isomorphism) graph that is realizable as the compressed $0$-divisor graph of a local Artinian principal ideal ring. Certain graphs associated with partially ordered abelian groups have an essential role in the work.

References

  • M. Abdulla and A. Badawi, On the dot product graph of a commutative ring II, Int. Electron. J. Algebra, 28 (2020), 61-74.
  • S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra, 274 (2004), 847-855.
  • D. F. Anderson, A. Frazier, A. Lauve and P. S. Livingston, The zero-divisor graph of a commutative ring, II, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, Basel, 220 (2001), 61-72.
  • D. F. Anderson and J. D. LaGrange, Some remarks on the compressed zero-divisor graph, J. Algebra, 447 (2016), 297-321.
  • D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(2) (1999), 434-447.
  • G. Arunkumar, P. J. Cameron, T. Kavaskar and T. Tamizh Chelvam, Induced subgraphs of zero-divisor graphs, Discrete Math., 346(10) (2023), 113580 (9 pp).
  • M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
  • M. Axtell and J. Stickles, Irreducible divisor graphs in commutative rings with zero divisors, Comm. Algebra, 36(5) (2008), 1883-1893.
  • I. Beck, Coloring of commutative rings, J. Algebra, 116(1) (1988), 208-226.
  • M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl., 10(4) (2011), 741-753.
  • J. Coykendall and J. Maney, Irreducible divisor graphs, Comm. Algebra, 35(3) (2007), 885-895.
  • F. R. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum, 65(2) (2002), 206-214.
  • R. Halas and M. Jukl, On Beck's coloring of posets, Discrete Math., 309(13) (2009), 4584-4589.
  • T. W. Hungerford, On the structure of principal ideal rings, Pacific J. Math., 25 (1968), 543-547.
  • V. Joshi and A. Khiste, The zero divisor graphs of Boolean posets, Math. Slovaca, 64(2) (2014), 511-519.
  • C. F. Kimball and J. D. LaGrange, The idempotent-divisor graphs of a commutative ring, Comm. Algebra, 46(9) (2018), 3899-3912.
  • J. D. LaGrange, Complemented zero-divisor graphs and Boolean rings, J. Algebra, 315(2) (2007), 600-611.
  • J. D. LaGrange, The $x$-divisor pseudographs of a commutative groupoid, Int. Electron. J. Algebra, 22 (2017), 62-77.
  • J. D. LaGrange, Divisor graphs of a commutative ring, in Advances in Commutative Algebra, Trends in Mathematics, Birkhauser/Springer, Singapore, (2019), 217-244.
  • J. D. LaGrange, Divisor graphs and isotopy invariants of commutative quasigroups, J. Combin. Theory Ser. A, 187 (2022), 105577 (16 pp).
  • J. D. LaGrange, Intervals of posets of a zero-divisor graph, Math. Slovaca, 74(4) (2024), 803-818.
  • D. Lu and T. Wu, The zero-divisor graphs which are uniquely determined by neighborhoods, Comm. Algebra, 35(12) (2007), 3855-3864.
  • D. Lu and T. Wu, The zero-divisor graphs of posets and an application to semigroups, Graphs Combin., 26(6) (2010), 793-804.
  • A. Mohammadian, On zero-divisor graphs of Boolean rings, Pacific J. Math., 251(2) (2011), 375-383.
  • C. P. Mooney, $\tau$-Irreducible divisor graphs in commutative rings with zero-divisors, Int. Electron. J. Algebra, 20 (2016), 45-69.
  • J. D. Monk, Introduction to Set Theory, McGraw-Hill Book Co., New York-London-Sydney, 1969.
  • S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra, 30(7) (2002), 3533-3558.
  • A. Sharma and D. K. Basnet, Nil clean divisor graph, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 41(1) (2021), 146-153.
  • M. Tavakkoli, A. Borumand Saeid and N. Shajareh Poursalavati, Classification of posets using zero-divisor graphs, Math. Slovaca, 68(1) (2018), 21-32.
There are 29 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

John D. La Grange

Early Pub Date January 8, 2025
Publication Date January 14, 2025
Submission Date July 29, 2024
Acceptance Date December 31, 2024
Published in Issue Year 2025 Volume: 37 Issue: 37

Cite

APA La Grange, J. D. (2025). On divisor graphs of valuation domains and local Artinian principal ideal rings. International Electronic Journal of Algebra, 37(37), 14-35. https://doi.org/10.24330/ieja.1615640
AMA La Grange JD. On divisor graphs of valuation domains and local Artinian principal ideal rings. IEJA. January 2025;37(37):14-35. doi:10.24330/ieja.1615640
Chicago La Grange, John D. “On Divisor Graphs of Valuation Domains and Local Artinian Principal Ideal Rings”. International Electronic Journal of Algebra 37, no. 37 (January 2025): 14-35. https://doi.org/10.24330/ieja.1615640.
EndNote La Grange JD (January 1, 2025) On divisor graphs of valuation domains and local Artinian principal ideal rings. International Electronic Journal of Algebra 37 37 14–35.
IEEE J. D. La Grange, “On divisor graphs of valuation domains and local Artinian principal ideal rings”, IEJA, vol. 37, no. 37, pp. 14–35, 2025, doi: 10.24330/ieja.1615640.
ISNAD La Grange, John D. “On Divisor Graphs of Valuation Domains and Local Artinian Principal Ideal Rings”. International Electronic Journal of Algebra 37/37 (January 2025), 14-35. https://doi.org/10.24330/ieja.1615640.
JAMA La Grange JD. On divisor graphs of valuation domains and local Artinian principal ideal rings. IEJA. 2025;37:14–35.
MLA La Grange, John D. “On Divisor Graphs of Valuation Domains and Local Artinian Principal Ideal Rings”. International Electronic Journal of Algebra, vol. 37, no. 37, 2025, pp. 14-35, doi:10.24330/ieja.1615640.
Vancouver La Grange JD. On divisor graphs of valuation domains and local Artinian principal ideal rings. IEJA. 2025;37(37):14-35.