Research Article
BibTex RIS Cite

IFHP Transformations on the Tangent Bundle with the Deformed Complete Lift Metric

Year 2022, , 153 - 159, 30.04.2022
https://doi.org/10.36890/iejg.1037651

Abstract

Let $(M_n,g)$ be a Riemannian manifold and $TM_n$ the total space of its tangent bundle. In this paper, we determine the infinitesimal fiber-preserving holomorphically projective (IFHP) transformations on $TM_n$ with respect to the Levi-Civita connection of the deformed complete lift metric $\tilde{G}_f=g^C+(fg)^V$, where $f$ is a nonzero differentiable function on $M_n$ and $g^C$ and $g^V$ are the complete lift and the vertical lift of $g$ on $TM_n$, respectively. Morevore, we prove that every IFHP transformation on $(TM_n,\tilde{G}_f)$ is reduced to an affine and induces an infinitesimal affine transformation on $(M_n,g)$.

References

  • [1] Abbassi, M.T.K., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno) Tomus. 41, 71-92 (2005).
  • [2] Abbassi, M.T.K., Sarih, M.: On Riemannian g-natural metrics of the form ags + bgh + cgv on the tangent bundle of a Riemannian manifold (M; g). Mediterr. J. Math. 2, 19-43 (2005).
  • [3] Bejan, C.L., Dru¸t˘a-Romaniuc, S.L.: H-projectively Euclidean Kähler tangent bundles of natural diagonal type. Publ. Math. Debrecen. 89 (4), 499-511 (2016).
  • [4] Gezer, A.: On infinitesimal conformal transformations of the tangent bundles with the synectic lift of a Riemannian metric. Proc. Indian Acad. Sci. (Math. Sci.) 119 (3), 345-350 (2009).
  • [5] Gezer, A.: On infinitesimal holomorphically projective transformations on the tangent bundles with respect to the Sasaki metric. Proceedings of the Estonian Academy of Sciences. 60 (3), 149-157 (2011).
  • [6] Gezer, A., Özkan, M.: Notes on the tangent bundle with deformed complete lift metric. Turkish Journal of Mathematics. 38, 1038-1049 (2014).
  • [7] Hasegawa, I., Yamauchi, K.: Infinitesimal holomorphically projective transformations on the tangent bundles with horizontal lift connection and adapted almost complex structure. J. Hokkaido Univ. Educ. 53, 1-8 (2003).
  • [8] Hasegawa, I., Yamauchi, K.: Infinitesimal holomorphically projective transformations on the tangent bundles with complete lift connection. Differential Geometry-Dynamical Systems. 7, 42-48 (2005).
  • [9] Hasegawa, I., Yamauchi, K.: On infinitesimal holomorphically projective transformations in compact Kaehlerian manifolds. Hokkaido Math. J. 8, 214-219 (1979).
  • [10] Ishihara, S.: Holomorphically projective changes and their groups in an almost complex manifold. Tohoku Math. J. 9, 273-297 (1957).
  • [11] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 10, 338-358 (1958).
  • [12] Tachibana, S., Ishihara, S.: On infinitesimal holomorphically projective transformations in Kahlerian manifolds. Tohoku Math. J. 10, 77-101 (1960).
  • [13] Tarakci, O., Gezer, A., Salimov, A. A.: On solutions of IHPT equations on tangent bundle with the metric II+III. Math. Comput. Modelling. 50, 953-958 (2009).
  • [14] Yamauchi, K.: On infinitesimal conformal transformations of the tangent bundles over Riemannian manifolds. Ann. Rep. Asahikawa. Med. Coll. 16, 1-6 (1995).
  • [15] Yano, K.: The Theory of Lie Derivatives and Its Applications. Bibliotheca mathematica, North Holland Pub. Co. (1957).
  • [16] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles. Marcel Dekker, Inc. New York (1973).
  • [17] Yano, K., Kobayashi, S.: Prolongation of tensor fields and connections to tangent bundles I, II, III. J. Math. Soc. Japan. 18, 194-210, 236–246 (1966), 19, 486-488 (1967).
  • [18] Zohrehvand, M.: IFHP transformations on the tangent bundle of a Riemannian manifold with a class of pseudo-Riemannian metrics. C. R. Acad. Bulg. Sci. 73 (2), 170-178 (2020).
  • [19] Zohrehvand, M.: Projective vector fields on the tangent bundle with the deformed complete lift metrics. Balkan J. Geom. Appl. 25 (2), 170-178 (2020).
Year 2022, , 153 - 159, 30.04.2022
https://doi.org/10.36890/iejg.1037651

Abstract

References

  • [1] Abbassi, M.T.K., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno) Tomus. 41, 71-92 (2005).
  • [2] Abbassi, M.T.K., Sarih, M.: On Riemannian g-natural metrics of the form ags + bgh + cgv on the tangent bundle of a Riemannian manifold (M; g). Mediterr. J. Math. 2, 19-43 (2005).
  • [3] Bejan, C.L., Dru¸t˘a-Romaniuc, S.L.: H-projectively Euclidean Kähler tangent bundles of natural diagonal type. Publ. Math. Debrecen. 89 (4), 499-511 (2016).
  • [4] Gezer, A.: On infinitesimal conformal transformations of the tangent bundles with the synectic lift of a Riemannian metric. Proc. Indian Acad. Sci. (Math. Sci.) 119 (3), 345-350 (2009).
  • [5] Gezer, A.: On infinitesimal holomorphically projective transformations on the tangent bundles with respect to the Sasaki metric. Proceedings of the Estonian Academy of Sciences. 60 (3), 149-157 (2011).
  • [6] Gezer, A., Özkan, M.: Notes on the tangent bundle with deformed complete lift metric. Turkish Journal of Mathematics. 38, 1038-1049 (2014).
  • [7] Hasegawa, I., Yamauchi, K.: Infinitesimal holomorphically projective transformations on the tangent bundles with horizontal lift connection and adapted almost complex structure. J. Hokkaido Univ. Educ. 53, 1-8 (2003).
  • [8] Hasegawa, I., Yamauchi, K.: Infinitesimal holomorphically projective transformations on the tangent bundles with complete lift connection. Differential Geometry-Dynamical Systems. 7, 42-48 (2005).
  • [9] Hasegawa, I., Yamauchi, K.: On infinitesimal holomorphically projective transformations in compact Kaehlerian manifolds. Hokkaido Math. J. 8, 214-219 (1979).
  • [10] Ishihara, S.: Holomorphically projective changes and their groups in an almost complex manifold. Tohoku Math. J. 9, 273-297 (1957).
  • [11] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 10, 338-358 (1958).
  • [12] Tachibana, S., Ishihara, S.: On infinitesimal holomorphically projective transformations in Kahlerian manifolds. Tohoku Math. J. 10, 77-101 (1960).
  • [13] Tarakci, O., Gezer, A., Salimov, A. A.: On solutions of IHPT equations on tangent bundle with the metric II+III. Math. Comput. Modelling. 50, 953-958 (2009).
  • [14] Yamauchi, K.: On infinitesimal conformal transformations of the tangent bundles over Riemannian manifolds. Ann. Rep. Asahikawa. Med. Coll. 16, 1-6 (1995).
  • [15] Yano, K.: The Theory of Lie Derivatives and Its Applications. Bibliotheca mathematica, North Holland Pub. Co. (1957).
  • [16] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles. Marcel Dekker, Inc. New York (1973).
  • [17] Yano, K., Kobayashi, S.: Prolongation of tensor fields and connections to tangent bundles I, II, III. J. Math. Soc. Japan. 18, 194-210, 236–246 (1966), 19, 486-488 (1967).
  • [18] Zohrehvand, M.: IFHP transformations on the tangent bundle of a Riemannian manifold with a class of pseudo-Riemannian metrics. C. R. Acad. Bulg. Sci. 73 (2), 170-178 (2020).
  • [19] Zohrehvand, M.: Projective vector fields on the tangent bundle with the deformed complete lift metrics. Balkan J. Geom. Appl. 25 (2), 170-178 (2020).
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Mosayeb Zohrehvand 0000-0002-3876-4060

Publication Date April 30, 2022
Acceptance Date January 18, 2022
Published in Issue Year 2022

Cite

APA Zohrehvand, M. (2022). IFHP Transformations on the Tangent Bundle with the Deformed Complete Lift Metric. International Electronic Journal of Geometry, 15(1), 153-159. https://doi.org/10.36890/iejg.1037651
AMA Zohrehvand M. IFHP Transformations on the Tangent Bundle with the Deformed Complete Lift Metric. Int. Electron. J. Geom. April 2022;15(1):153-159. doi:10.36890/iejg.1037651
Chicago Zohrehvand, Mosayeb. “IFHP Transformations on the Tangent Bundle With the Deformed Complete Lift Metric”. International Electronic Journal of Geometry 15, no. 1 (April 2022): 153-59. https://doi.org/10.36890/iejg.1037651.
EndNote Zohrehvand M (April 1, 2022) IFHP Transformations on the Tangent Bundle with the Deformed Complete Lift Metric. International Electronic Journal of Geometry 15 1 153–159.
IEEE M. Zohrehvand, “IFHP Transformations on the Tangent Bundle with the Deformed Complete Lift Metric”, Int. Electron. J. Geom., vol. 15, no. 1, pp. 153–159, 2022, doi: 10.36890/iejg.1037651.
ISNAD Zohrehvand, Mosayeb. “IFHP Transformations on the Tangent Bundle With the Deformed Complete Lift Metric”. International Electronic Journal of Geometry 15/1 (April 2022), 153-159. https://doi.org/10.36890/iejg.1037651.
JAMA Zohrehvand M. IFHP Transformations on the Tangent Bundle with the Deformed Complete Lift Metric. Int. Electron. J. Geom. 2022;15:153–159.
MLA Zohrehvand, Mosayeb. “IFHP Transformations on the Tangent Bundle With the Deformed Complete Lift Metric”. International Electronic Journal of Geometry, vol. 15, no. 1, 2022, pp. 153-9, doi:10.36890/iejg.1037651.
Vancouver Zohrehvand M. IFHP Transformations on the Tangent Bundle with the Deformed Complete Lift Metric. Int. Electron. J. Geom. 2022;15(1):153-9.