Research Article
BibTex RIS Cite
Year 2023, , 215 - 224, 30.04.2023
https://doi.org/10.36890/iejg.1231759

Abstract

References

  • [1] Aledo, J. A., Espinar, J. M., Gálvez, J. A.: Complete surfaces of constant curvature in H2 × R and S2 × R. Calc. Var., 29, 347–363 (2007).
  • [2] Aledo, J. A., Lozano, V., A. Pastor, J. A.: Compact Surfaces with Constant Gaussian Curvature in Product Spaces. Mediterr. J. Math., 7, 263-270 (2010).
  • [3] Belarbi, L.: Surfaces with constant extrinsically Gaussian curvature in the Heisenberg group. Ann. Math. Inform., 50, 5-17 (2019).
  • [4] Cui, Q., Mafra, A., Peñafiel, C.: Immersed hyperbolic and parabolic screw motion surfaces in the space P SL ]2(R, τ). Geom. Dedicata, 178, 297-322 (2015).
  • [5] Daniel, B.: Minimal isometric immersions into S2 × R and H2 × R. Indiana Univ. Math. J., 64, 1425-1445 (2015).
  • [6] Dillen, F., Fastenakels, J., Van der Veken, J.: Rotation hypersurfaces in Sn × R and Hn × R. Note Mat., 29(1), 41-54 (2009).
  • [7] Espinar, J. M., Gálvez, J. A., Rosenberg, H.: Complete surfaces with positive extrinsic curvature in product spaces. Comment. Math. Helv., 84, 351-386 (2009).
  • [8] Hasanis, T., López, R.: Minimal Translation Surfaces in Euclidean Space. Results Math., 75, Article number: 2 (2020).
  • [9] Hauswirth, l., Rosenberg, H., Spruck, J.: On complete mean curvature H = 1/2 surfaces in H2 × R. Comm. Anal. Geom., 16(5), 989-1005 (2009).
  • [10] Lone, M. S., Karacan, M. K., Tuncer, Y., Es, H.: Translation surfaces in affine 3-space. Hacet. J. Math. Stat., 49, 1944-1954 (2020).
  • [11] López, R.: Minimal translation surfaces in hyperbolic space. Beitr. Algebra Geom., 52, 105-112 (2011).
  • [12] Meeks, W.H., Rosenberg, H.: The theory of minimal surfaces in M2 × R. Comment. Math. Helv., 80, 811-858 (2005).
  • [13] Montaldo, S., Onnis, I. I.: Invariant CMC surfaces in H2 × R. Glasg. Math. J., 46, 311-321 (2004).
  • [14] Nelli, B., Sa Earp, R., Santos, W., Toubiana, E.: Uniqueness of H-surfaces in H2 × R, |H| ≤ 1/2, with boundary one or two parallel horizontal circles. Ann. Global Anal. Geom., 33(4), 307-321 (2008).
  • [15] Nelli, B., Rosenberg, H.: Minimal surfaces in M2 × R. Bull. Braz. Math. Soc., New Series, 33(2), 263-292 (2002).
  • [16] Novais, R., Dos Santos, J. P.: Intrinsic and extrinsic geometry of hypersurfaces in Sn × R and Hn × R. J. Geom., 108, 1115-1127 (2017).
  • [17] Rosenberg, H.: Minimal surfaces in M2 × R. Illinois J. Math., 46, 1177-1195 (2002).
  • [18] Sa Earp, R.: Parabolic and hyperbolic screw motion surfaces in H2 × R. J. Aust. Math. Soc., 85, 113–143 (2008).
  • [19] Sa Earp, R., Toubiana, E.: Screw motion surfaces in H2 × R and S2 × R. Illinois J. Math., 49, 1323–1362 (2005).
  • [20] Souam, R., Toubiana, E. Totally umbilic surfaces in homogeneous 3-manifolds. Comment. Math. Helv., 84, 673-704 (2009)

Graph Surfaces Invariant by Parabolic screw Motions with Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$

Year 2023, , 215 - 224, 30.04.2023
https://doi.org/10.36890/iejg.1231759

Abstract

In this work we study vertical graph surfaces invariant by parabolic screw motions with pitch $\ell >0$ and constant Gaussian curvature or constant extrinsic curvature in the product space $\mathbb H^2 \times \mathbb R$. In particular, we determine flat and extrinsically flat graph surfaces in $\mathbb H^2 \times \mathbb R$. We also obtain complete and non-complete vertical graph surfaces in $\mathbb H^2 \times \mathbb R$ with negative constant Gaussian curvature and zero extrinsic curvature.

References

  • [1] Aledo, J. A., Espinar, J. M., Gálvez, J. A.: Complete surfaces of constant curvature in H2 × R and S2 × R. Calc. Var., 29, 347–363 (2007).
  • [2] Aledo, J. A., Lozano, V., A. Pastor, J. A.: Compact Surfaces with Constant Gaussian Curvature in Product Spaces. Mediterr. J. Math., 7, 263-270 (2010).
  • [3] Belarbi, L.: Surfaces with constant extrinsically Gaussian curvature in the Heisenberg group. Ann. Math. Inform., 50, 5-17 (2019).
  • [4] Cui, Q., Mafra, A., Peñafiel, C.: Immersed hyperbolic and parabolic screw motion surfaces in the space P SL ]2(R, τ). Geom. Dedicata, 178, 297-322 (2015).
  • [5] Daniel, B.: Minimal isometric immersions into S2 × R and H2 × R. Indiana Univ. Math. J., 64, 1425-1445 (2015).
  • [6] Dillen, F., Fastenakels, J., Van der Veken, J.: Rotation hypersurfaces in Sn × R and Hn × R. Note Mat., 29(1), 41-54 (2009).
  • [7] Espinar, J. M., Gálvez, J. A., Rosenberg, H.: Complete surfaces with positive extrinsic curvature in product spaces. Comment. Math. Helv., 84, 351-386 (2009).
  • [8] Hasanis, T., López, R.: Minimal Translation Surfaces in Euclidean Space. Results Math., 75, Article number: 2 (2020).
  • [9] Hauswirth, l., Rosenberg, H., Spruck, J.: On complete mean curvature H = 1/2 surfaces in H2 × R. Comm. Anal. Geom., 16(5), 989-1005 (2009).
  • [10] Lone, M. S., Karacan, M. K., Tuncer, Y., Es, H.: Translation surfaces in affine 3-space. Hacet. J. Math. Stat., 49, 1944-1954 (2020).
  • [11] López, R.: Minimal translation surfaces in hyperbolic space. Beitr. Algebra Geom., 52, 105-112 (2011).
  • [12] Meeks, W.H., Rosenberg, H.: The theory of minimal surfaces in M2 × R. Comment. Math. Helv., 80, 811-858 (2005).
  • [13] Montaldo, S., Onnis, I. I.: Invariant CMC surfaces in H2 × R. Glasg. Math. J., 46, 311-321 (2004).
  • [14] Nelli, B., Sa Earp, R., Santos, W., Toubiana, E.: Uniqueness of H-surfaces in H2 × R, |H| ≤ 1/2, with boundary one or two parallel horizontal circles. Ann. Global Anal. Geom., 33(4), 307-321 (2008).
  • [15] Nelli, B., Rosenberg, H.: Minimal surfaces in M2 × R. Bull. Braz. Math. Soc., New Series, 33(2), 263-292 (2002).
  • [16] Novais, R., Dos Santos, J. P.: Intrinsic and extrinsic geometry of hypersurfaces in Sn × R and Hn × R. J. Geom., 108, 1115-1127 (2017).
  • [17] Rosenberg, H.: Minimal surfaces in M2 × R. Illinois J. Math., 46, 1177-1195 (2002).
  • [18] Sa Earp, R.: Parabolic and hyperbolic screw motion surfaces in H2 × R. J. Aust. Math. Soc., 85, 113–143 (2008).
  • [19] Sa Earp, R., Toubiana, E.: Screw motion surfaces in H2 × R and S2 × R. Illinois J. Math., 49, 1323–1362 (2005).
  • [20] Souam, R., Toubiana, E. Totally umbilic surfaces in homogeneous 3-manifolds. Comment. Math. Helv., 84, 673-704 (2009)
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Uğur Dursun 0000-0002-5225-186X

Publication Date April 30, 2023
Acceptance Date April 2, 2023
Published in Issue Year 2023

Cite

APA Dursun, U. (2023). Graph Surfaces Invariant by Parabolic screw Motions with Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$. International Electronic Journal of Geometry, 16(1), 215-224. https://doi.org/10.36890/iejg.1231759
AMA Dursun U. Graph Surfaces Invariant by Parabolic screw Motions with Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$. Int. Electron. J. Geom. April 2023;16(1):215-224. doi:10.36890/iejg.1231759
Chicago Dursun, Uğur. “Graph Surfaces Invariant by Parabolic Screw Motions With Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$”. International Electronic Journal of Geometry 16, no. 1 (April 2023): 215-24. https://doi.org/10.36890/iejg.1231759.
EndNote Dursun U (April 1, 2023) Graph Surfaces Invariant by Parabolic screw Motions with Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$. International Electronic Journal of Geometry 16 1 215–224.
IEEE U. Dursun, “Graph Surfaces Invariant by Parabolic screw Motions with Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$”, Int. Electron. J. Geom., vol. 16, no. 1, pp. 215–224, 2023, doi: 10.36890/iejg.1231759.
ISNAD Dursun, Uğur. “Graph Surfaces Invariant by Parabolic Screw Motions With Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$”. International Electronic Journal of Geometry 16/1 (April 2023), 215-224. https://doi.org/10.36890/iejg.1231759.
JAMA Dursun U. Graph Surfaces Invariant by Parabolic screw Motions with Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$. Int. Electron. J. Geom. 2023;16:215–224.
MLA Dursun, Uğur. “Graph Surfaces Invariant by Parabolic Screw Motions With Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$”. International Electronic Journal of Geometry, vol. 16, no. 1, 2023, pp. 215-24, doi:10.36890/iejg.1231759.
Vancouver Dursun U. Graph Surfaces Invariant by Parabolic screw Motions with Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$. Int. Electron. J. Geom. 2023;16(1):215-24.