Research Article
BibTex RIS Cite
Year 2024, , 538 - 550, 27.10.2024
https://doi.org/10.36890/iejg.1407888

Abstract

References

  • [1] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Math. 203, Birkhäuser Boston, Inc., Boston, second edition (2010).
  • [2] Cho, J. T.: Notes on almost Kenmotsu three-manifolds. Honam Math. J. 36(3), 637–645 (2014).
  • [3] Cho, J. T., Kimura, M.: Reeb flow symmetry on almost contact three-manifolds. Differential Geom. Appl. 35(suppl.), 266–273 (2014).
  • [4] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and local symmetry. Bull. Belg. Math. Soc. Simon Stevin 14(2), 343–354 (2007).
  • [5] Inoguchi, J.: A note on almost contact Riemannian 3-manifolds. Bull. Yamagata Univ. Natur. Sci. 17(1), 1–6 (2010).
  • [6] Inoguchi, J.: Characteristic Jacobi operator on almost Kenmotsu 3-manifolds. Int. Electron. J. Geom. 16(2), 464-525 (2023).
  • [7] Inoguchi, J., Lee, J.-E.: Pseudo-symmetric almost Kenmotsu 3-manifolds. Period Math Hung (2024). https://doi.org/10.1007/s10998-024- 00591-4
  • [8] Inoguchi, J., Lee, J.-E.: On the η-parallelism in almost Kenmotsu 3-manifolds. J. Korean Math. Soc. 60(6), 1303–1336 (2023).
  • [9] Janssens, D., Vanhecke, L.: Almost contact structures and curvature tensors. Kodai Math. J. 4(1), 1–27 (1981).
  • [10] Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tohoku Math. J. 24, 93–103 (1972).
  • [11] Olszak, Z.: On Ricci-recurrent manifolds. Colloq. Math., 52, 205-211 (1987).
  • [12] Perrone, D.: Almost contact metric manifolds whose Reeb vector field is a harmonic section. Acta Math. Hung. 138, 102-126 (2013).
  • [13] Perrone, D.: Differ. Geom. Appl. 59, 66–90 (2018).
  • [14] Perrone, D.: Left-invariant almost α-coKähler structures on 3D semidirect product Lie groups. Int. J. Geom. Methods Mod. Phys. 16(1) Article ID 1950011 (18 pages) (2019).
  • [15] Perrone, D.: Almost contact Riemannian three-manifolds with Reeb flow symmetry. Differ. Geom. Appl. 75, Article ID 101736 11 pages (2021).
  • [16] Shukla, S. S., Shukla, M. K.: On ϕ-Ricci symmetric Kenmotsu manifolds. Novi Sad J. Math. 39(2), 89–95 (2009).
  • [17] Venkatesha, V., Kumara, H. A., Naik, D. M.: Ricci recurrent almost Kenmotsu 3-manifolds. Filomat 35(7), 2293–2301 (2021).

On Ricci Recurrent Almost Kenmotsu $3$-manifolds

Year 2024, , 538 - 550, 27.10.2024
https://doi.org/10.36890/iejg.1407888

Abstract

In this paper, we prove first that for an almost Kenmotsu $3$-manifold satisfying $\xi (tr \, h^2)=0$, its Ricci operator is recurrent if and only if the manifold is locally symmetric. Next, we show that $\varphi$-Ricci symmetry and $\varphi$-Ricci recurrence are equivalent conditions in almost Kenmotsu $3$-manifolds. Thus, an almost Kenmotsu $3$-manifold is $\varphi$-Ricci symmetric if and only if it has dominantly $\eta$-parallel Ricci operator.

References

  • [1] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Math. 203, Birkhäuser Boston, Inc., Boston, second edition (2010).
  • [2] Cho, J. T.: Notes on almost Kenmotsu three-manifolds. Honam Math. J. 36(3), 637–645 (2014).
  • [3] Cho, J. T., Kimura, M.: Reeb flow symmetry on almost contact three-manifolds. Differential Geom. Appl. 35(suppl.), 266–273 (2014).
  • [4] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and local symmetry. Bull. Belg. Math. Soc. Simon Stevin 14(2), 343–354 (2007).
  • [5] Inoguchi, J.: A note on almost contact Riemannian 3-manifolds. Bull. Yamagata Univ. Natur. Sci. 17(1), 1–6 (2010).
  • [6] Inoguchi, J.: Characteristic Jacobi operator on almost Kenmotsu 3-manifolds. Int. Electron. J. Geom. 16(2), 464-525 (2023).
  • [7] Inoguchi, J., Lee, J.-E.: Pseudo-symmetric almost Kenmotsu 3-manifolds. Period Math Hung (2024). https://doi.org/10.1007/s10998-024- 00591-4
  • [8] Inoguchi, J., Lee, J.-E.: On the η-parallelism in almost Kenmotsu 3-manifolds. J. Korean Math. Soc. 60(6), 1303–1336 (2023).
  • [9] Janssens, D., Vanhecke, L.: Almost contact structures and curvature tensors. Kodai Math. J. 4(1), 1–27 (1981).
  • [10] Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tohoku Math. J. 24, 93–103 (1972).
  • [11] Olszak, Z.: On Ricci-recurrent manifolds. Colloq. Math., 52, 205-211 (1987).
  • [12] Perrone, D.: Almost contact metric manifolds whose Reeb vector field is a harmonic section. Acta Math. Hung. 138, 102-126 (2013).
  • [13] Perrone, D.: Differ. Geom. Appl. 59, 66–90 (2018).
  • [14] Perrone, D.: Left-invariant almost α-coKähler structures on 3D semidirect product Lie groups. Int. J. Geom. Methods Mod. Phys. 16(1) Article ID 1950011 (18 pages) (2019).
  • [15] Perrone, D.: Almost contact Riemannian three-manifolds with Reeb flow symmetry. Differ. Geom. Appl. 75, Article ID 101736 11 pages (2021).
  • [16] Shukla, S. S., Shukla, M. K.: On ϕ-Ricci symmetric Kenmotsu manifolds. Novi Sad J. Math. 39(2), 89–95 (2009).
  • [17] Venkatesha, V., Kumara, H. A., Naik, D. M.: Ricci recurrent almost Kenmotsu 3-manifolds. Filomat 35(7), 2293–2301 (2021).
There are 17 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Ji-eun Lee 0000-0003-0698-9596

Early Pub Date September 24, 2024
Publication Date October 27, 2024
Submission Date December 21, 2023
Acceptance Date July 21, 2024
Published in Issue Year 2024

Cite

APA Lee, J.-e. (2024). On Ricci Recurrent Almost Kenmotsu $3$-manifolds. International Electronic Journal of Geometry, 17(2), 538-550. https://doi.org/10.36890/iejg.1407888
AMA Lee Je. On Ricci Recurrent Almost Kenmotsu $3$-manifolds. Int. Electron. J. Geom. October 2024;17(2):538-550. doi:10.36890/iejg.1407888
Chicago Lee, Ji-eun. “On Ricci Recurrent Almost Kenmotsu $3$-Manifolds”. International Electronic Journal of Geometry 17, no. 2 (October 2024): 538-50. https://doi.org/10.36890/iejg.1407888.
EndNote Lee J-e (October 1, 2024) On Ricci Recurrent Almost Kenmotsu $3$-manifolds. International Electronic Journal of Geometry 17 2 538–550.
IEEE J.-e. Lee, “On Ricci Recurrent Almost Kenmotsu $3$-manifolds”, Int. Electron. J. Geom., vol. 17, no. 2, pp. 538–550, 2024, doi: 10.36890/iejg.1407888.
ISNAD Lee, Ji-eun. “On Ricci Recurrent Almost Kenmotsu $3$-Manifolds”. International Electronic Journal of Geometry 17/2 (October 2024), 538-550. https://doi.org/10.36890/iejg.1407888.
JAMA Lee J-e. On Ricci Recurrent Almost Kenmotsu $3$-manifolds. Int. Electron. J. Geom. 2024;17:538–550.
MLA Lee, Ji-eun. “On Ricci Recurrent Almost Kenmotsu $3$-Manifolds”. International Electronic Journal of Geometry, vol. 17, no. 2, 2024, pp. 538-50, doi:10.36890/iejg.1407888.
Vancouver Lee J-e. On Ricci Recurrent Almost Kenmotsu $3$-manifolds. Int. Electron. J. Geom. 2024;17(2):538-50.