Research Article
BibTex RIS Cite
Year 2024, , 496 - 506, 27.10.2024
https://doi.org/10.36890/iejg.1472479

Abstract

References

  • [1] Bayour, B., Beldjilali, G.: Ricci solitons on 3-dimensional C12-Manifolds. Balkan J. Geo. and Its. Appl., 27 No.2, 26-36 (2022).
  • [2] Bayour, B., Beldjilali, G., Sinacer, M. A.: Almost contact metric manifolds with certain condition. Annals of Global Analysis and Geometry. 64, 12 (2023), doi.org/10.1007/s10455-023-09917-w.
  • [3] Beldjilali, G.: 3-dimensional C12-Manifolds. Revista Uni. Mat. Argentina, 67 No.1, 1-14 (2024). doi.org/10.33044/revuma.3088.
  • [4] Beldjilali, G.: Slant curves on 3-dimensional C12-Manifolds. Balkan J. of Geo. and Its App., 27 No.2, 13-25 (2022).
  • [5] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics Vol. 203, (2002) Birhauser, Boston.
  • [6] Bouzir, H., Beldjilali, G., Bayour, B.: On Three Dimensional C12-Manifolds. Mediterr. J. Math., 18, 239 (2021). doi.org/10.1007/s00009-021- 01921-3.
  • [7] De, U. C., Tripathi, M. M.: Tensor in 3-dimensional Trans-Sasakian Manifolds. Kyungpook Math. J., 43, 247-255 (2003).
  • [8] Ghosh, A.: Sharma, R.: Sasakian metric as a Ricci soliton and related results. J. Geom. Phys., 75, 1-6 (2014).
  • [9] Ghosh, A.: Kenmotsu 3-metric as a Ricci soliton Chaos, Solitons and Fractals, 44, 647-650 (2011).
  • [10] Hamilton, R. S.: The Ricci flow on surfaces, Mathematics and general relativity. 71, 237-262 (1998).
  • [11] Nagaraja, H. G.: Premalatha, C. R.: Ricci solitons in Kenmotsu manifold. Journal of Mathematical Analysis, 3(2),18-24 (2012).
  • [12] Olszak, Z.: Normal almost contact manifolds of dimension three. Annales Pol. Math. XLVII, 41-50 (1986).
  • [13] Oubina, J. A.: New classes of almost contact metric structures. Publ. Math. Debrecen, 32, 187-193 (1985).
  • [14] Pigola, S., Rigoli, M., Rimoldi, M., Setti, A. G.: Ricci Almost Solitons Ann. Scuola. Norm. Sup. Pisa Cl. Sci. 5 Vol. X , 757-79 (2011).
  • [15] Sharma, R.: Certain results on K-contact and (κ, μ)-contact manifolds. J. Geom., 89 no.1, 138-147 (2008).
  • [16] Tripathi, M. M.: Ricci solitons in contact metric manifolds, arXiv:0801, 4222v1, [mathDG], (2008).
  • [17] Yano, K., Kon, M.: Structures on Manifolds, Series in Pure Math., World Sci, Vol 3 (1984).

From Ricci Soliton to Almost Contact Metric Structures

Year 2024, , 496 - 506, 27.10.2024
https://doi.org/10.36890/iejg.1472479

Abstract

In this paper, we construct almost contact metric structures on a three-dimensional Riemannian manifold equipped with an almost Ricci soliton. Then, we give the techniques necessary to define the nature of such structures. Concrete examples are given.

Supporting Institution

No

References

  • [1] Bayour, B., Beldjilali, G.: Ricci solitons on 3-dimensional C12-Manifolds. Balkan J. Geo. and Its. Appl., 27 No.2, 26-36 (2022).
  • [2] Bayour, B., Beldjilali, G., Sinacer, M. A.: Almost contact metric manifolds with certain condition. Annals of Global Analysis and Geometry. 64, 12 (2023), doi.org/10.1007/s10455-023-09917-w.
  • [3] Beldjilali, G.: 3-dimensional C12-Manifolds. Revista Uni. Mat. Argentina, 67 No.1, 1-14 (2024). doi.org/10.33044/revuma.3088.
  • [4] Beldjilali, G.: Slant curves on 3-dimensional C12-Manifolds. Balkan J. of Geo. and Its App., 27 No.2, 13-25 (2022).
  • [5] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics Vol. 203, (2002) Birhauser, Boston.
  • [6] Bouzir, H., Beldjilali, G., Bayour, B.: On Three Dimensional C12-Manifolds. Mediterr. J. Math., 18, 239 (2021). doi.org/10.1007/s00009-021- 01921-3.
  • [7] De, U. C., Tripathi, M. M.: Tensor in 3-dimensional Trans-Sasakian Manifolds. Kyungpook Math. J., 43, 247-255 (2003).
  • [8] Ghosh, A.: Sharma, R.: Sasakian metric as a Ricci soliton and related results. J. Geom. Phys., 75, 1-6 (2014).
  • [9] Ghosh, A.: Kenmotsu 3-metric as a Ricci soliton Chaos, Solitons and Fractals, 44, 647-650 (2011).
  • [10] Hamilton, R. S.: The Ricci flow on surfaces, Mathematics and general relativity. 71, 237-262 (1998).
  • [11] Nagaraja, H. G.: Premalatha, C. R.: Ricci solitons in Kenmotsu manifold. Journal of Mathematical Analysis, 3(2),18-24 (2012).
  • [12] Olszak, Z.: Normal almost contact manifolds of dimension three. Annales Pol. Math. XLVII, 41-50 (1986).
  • [13] Oubina, J. A.: New classes of almost contact metric structures. Publ. Math. Debrecen, 32, 187-193 (1985).
  • [14] Pigola, S., Rigoli, M., Rimoldi, M., Setti, A. G.: Ricci Almost Solitons Ann. Scuola. Norm. Sup. Pisa Cl. Sci. 5 Vol. X , 757-79 (2011).
  • [15] Sharma, R.: Certain results on K-contact and (κ, μ)-contact manifolds. J. Geom., 89 no.1, 138-147 (2008).
  • [16] Tripathi, M. M.: Ricci solitons in contact metric manifolds, arXiv:0801, 4222v1, [mathDG], (2008).
  • [17] Yano, K., Kon, M.: Structures on Manifolds, Series in Pure Math., World Sci, Vol 3 (1984).
There are 17 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Beldjilali Gherici 0000-0002-8933-1548

Early Pub Date September 20, 2024
Publication Date October 27, 2024
Submission Date April 23, 2024
Acceptance Date August 28, 2024
Published in Issue Year 2024

Cite

APA Gherici, B. (2024). From Ricci Soliton to Almost Contact Metric Structures. International Electronic Journal of Geometry, 17(2), 496-506. https://doi.org/10.36890/iejg.1472479
AMA Gherici B. From Ricci Soliton to Almost Contact Metric Structures. Int. Electron. J. Geom. October 2024;17(2):496-506. doi:10.36890/iejg.1472479
Chicago Gherici, Beldjilali. “From Ricci Soliton to Almost Contact Metric Structures”. International Electronic Journal of Geometry 17, no. 2 (October 2024): 496-506. https://doi.org/10.36890/iejg.1472479.
EndNote Gherici B (October 1, 2024) From Ricci Soliton to Almost Contact Metric Structures. International Electronic Journal of Geometry 17 2 496–506.
IEEE B. Gherici, “From Ricci Soliton to Almost Contact Metric Structures”, Int. Electron. J. Geom., vol. 17, no. 2, pp. 496–506, 2024, doi: 10.36890/iejg.1472479.
ISNAD Gherici, Beldjilali. “From Ricci Soliton to Almost Contact Metric Structures”. International Electronic Journal of Geometry 17/2 (October 2024), 496-506. https://doi.org/10.36890/iejg.1472479.
JAMA Gherici B. From Ricci Soliton to Almost Contact Metric Structures. Int. Electron. J. Geom. 2024;17:496–506.
MLA Gherici, Beldjilali. “From Ricci Soliton to Almost Contact Metric Structures”. International Electronic Journal of Geometry, vol. 17, no. 2, 2024, pp. 496-0, doi:10.36890/iejg.1472479.
Vancouver Gherici B. From Ricci Soliton to Almost Contact Metric Structures. Int. Electron. J. Geom. 2024;17(2):496-50.