[1] Ali AT, Önder M., Some characterizations of space-like rectifying curves in the Minkowski space-time. Glob J Sci Front Res Math Decision
Sci, 12(1) (2012), 57-64.
[2] Cambie S, Goemans W and Van Den Bussche I., Rectifying curves in n-dimensional Euclidean space. Turk J Math , 40 (2016), 210-223.
[3] Chen B-Y., When does the position vector of a space curve always lie in its rectifying plane? Am Math Mon, 110 (2003), 147-152.
[4] Chen B-Y, Dillen F. Rectifying curves as centrodes and extremal curves. Bull Inst Math Acad Sinica, 33 (2005), 77-90.
[5] ˙Ilarslan K, Nesovic E., Some characterizations of null, pseudo null and partially null rectifying curves in Minkowski space-time. Taiwanese
J Math, 12(5) (2008), 1035-1044.
[6] ˙Ilarslan K. and Nesovic E., Some characterizations of rectifying curves in the Euclidean space E4. Turk J Math, 32 (2008), 21-30.
[7] ˙Ilarslan K. and Nesovic E., On rectifying curves as centodes and extremal curves in the Minkowski 3-space. Novi Sad J Math, 37 (2007),
53-64.
[8] Ilarslan K. Spacelike normal curves in Minkowski space E31. Turk J Math, 29 (2005), 53-63,
[9] Ilarslan K., Nesovic E, Petrovic-Torgasev M., Some characterizations of rectifying curves in the Minkowski 3-space. Novi Sad J Math, 33
(2003), 23-32.
[10] Ilarslan K., Some special curves on non-Euclidean manifolds. PhD, Ankara University, Ankara, Turkey, 2002.
[11] Izumiya S, Takeuchi N., New special curves and developable surfaces. Turk J Math, 28 (2004),153-163.
[12] Lucas P, Ortega-Yagües JA., Rectifying curves in the three-dimensional sphere. J Math Anal Appl, 421 (2015), 4855-4868.
[13] O’neill B. Semi-Riemann Geometry with application to relativity. New York: Academic Press, 1983.
[14] Öztekin H, Ö˘grenmi¸s AO. Normal and rectifying curves in Pseudo-Galilean space G31and their characterizations. J Math Comput Sci, 2
(2012), 91-100.
[15] Yücesan, A., Ayyıldız, N., Çöken, A. C., On Rectifying Dual Space Curves. Revista Matematica Complutense, 20(2) (2007), 497-506.
35 www.
[1] Ali AT, Önder M., Some characterizations of space-like rectifying curves in the Minkowski space-time. Glob J Sci Front Res Math Decision
Sci, 12(1) (2012), 57-64.
[2] Cambie S, Goemans W and Van Den Bussche I., Rectifying curves in n-dimensional Euclidean space. Turk J Math , 40 (2016), 210-223.
[3] Chen B-Y., When does the position vector of a space curve always lie in its rectifying plane? Am Math Mon, 110 (2003), 147-152.
[4] Chen B-Y, Dillen F. Rectifying curves as centrodes and extremal curves. Bull Inst Math Acad Sinica, 33 (2005), 77-90.
[5] ˙Ilarslan K, Nesovic E., Some characterizations of null, pseudo null and partially null rectifying curves in Minkowski space-time. Taiwanese
J Math, 12(5) (2008), 1035-1044.
[6] ˙Ilarslan K. and Nesovic E., Some characterizations of rectifying curves in the Euclidean space E4. Turk J Math, 32 (2008), 21-30.
[7] ˙Ilarslan K. and Nesovic E., On rectifying curves as centodes and extremal curves in the Minkowski 3-space. Novi Sad J Math, 37 (2007),
53-64.
[8] Ilarslan K. Spacelike normal curves in Minkowski space E31. Turk J Math, 29 (2005), 53-63,
[9] Ilarslan K., Nesovic E, Petrovic-Torgasev M., Some characterizations of rectifying curves in the Minkowski 3-space. Novi Sad J Math, 33
(2003), 23-32.
[10] Ilarslan K., Some special curves on non-Euclidean manifolds. PhD, Ankara University, Ankara, Turkey, 2002.
[11] Izumiya S, Takeuchi N., New special curves and developable surfaces. Turk J Math, 28 (2004),153-163.
[12] Lucas P, Ortega-Yagües JA., Rectifying curves in the three-dimensional sphere. J Math Anal Appl, 421 (2015), 4855-4868.
[13] O’neill B. Semi-Riemann Geometry with application to relativity. New York: Academic Press, 1983.
[14] Öztekin H, Ö˘grenmi¸s AO. Normal and rectifying curves in Pseudo-Galilean space G31and their characterizations. J Math Comput Sci, 2
(2012), 91-100.
[15] Yücesan, A., Ayyıldız, N., Çöken, A. C., On Rectifying Dual Space Curves. Revista Matematica Complutense, 20(2) (2007), 497-506.
35 www.
Turhan, T. (2018). On Rectifying Curves and Their Characterization in Lorentz n-Space. International Electronic Journal of Geometry, 11(1), 26-36. https://doi.org/10.36890/iejg.545079
AMA
Turhan T. On Rectifying Curves and Their Characterization in Lorentz n-Space. Int. Electron. J. Geom. April 2018;11(1):26-36. doi:10.36890/iejg.545079
Chicago
Turhan, Tunahan. “On Rectifying Curves and Their Characterization in Lorentz N-Space”. International Electronic Journal of Geometry 11, no. 1 (April 2018): 26-36. https://doi.org/10.36890/iejg.545079.
EndNote
Turhan T (April 1, 2018) On Rectifying Curves and Their Characterization in Lorentz n-Space. International Electronic Journal of Geometry 11 1 26–36.
IEEE
T. Turhan, “On Rectifying Curves and Their Characterization in Lorentz n-Space”, Int. Electron. J. Geom., vol. 11, no. 1, pp. 26–36, 2018, doi: 10.36890/iejg.545079.
ISNAD
Turhan, Tunahan. “On Rectifying Curves and Their Characterization in Lorentz N-Space”. International Electronic Journal of Geometry 11/1 (April 2018), 26-36. https://doi.org/10.36890/iejg.545079.
JAMA
Turhan T. On Rectifying Curves and Their Characterization in Lorentz n-Space. Int. Electron. J. Geom. 2018;11:26–36.
MLA
Turhan, Tunahan. “On Rectifying Curves and Their Characterization in Lorentz N-Space”. International Electronic Journal of Geometry, vol. 11, no. 1, 2018, pp. 26-36, doi:10.36890/iejg.545079.
Vancouver
Turhan T. On Rectifying Curves and Their Characterization in Lorentz n-Space. Int. Electron. J. Geom. 2018;11(1):26-3.