Research Article
BibTex RIS Cite

The Euler Class in the Simplicial de Rham Complex

Year 2016, , 36 - 43, 30.10.2016
https://doi.org/10.36890/iejg.584579

Abstract

References

  • [1] Bott, R., On the Chern-Weil homomorphism and the continuous cohomology of the Lie group. Adv. in Math. 11 (1973), 289-303.
  • [2] Bott, R., Shulman, H. and Stasheff, J., On the de Rham Theory of Certain Classifying Spaces. Adv. in Math. 20 (1976), 43-56.
  • [3] Brylinski, J-L., Differentiable cohomology of gauge groups, math.DG/0011069.
  • [4] Dupont, J.L., Simplicial de Rham cohomology and characteristic classes of flat bundles. Topology Vol 15(1976),233-245, Perg Press.
  • [5] Dupont, J.L., Curvature and Characteristic Classes, Lecture Notes in Math. 640, Springer Verlag, 1978.
  • [6] Mostow, M. and Perchick, J., Notes on Gel’fand-Fuks Cohomology and Characteristic Classes (Lectures by Bott). In Eleventh Holiday Symposium. New Mexico State University, December 1973.
  • [7] Segal, G., Classifying spaces and spectral sequences. Inst. Hautes Études Sci. Publ. Math. No.34 1968 105-112.
  • [8] Suzuki, N., The Chern character in the Simplicial de Rham Complex. Nihonkai Mathematical Journal Vol.26 (2015), No1, pp.1-13.
Year 2016, , 36 - 43, 30.10.2016
https://doi.org/10.36890/iejg.584579

Abstract

References

  • [1] Bott, R., On the Chern-Weil homomorphism and the continuous cohomology of the Lie group. Adv. in Math. 11 (1973), 289-303.
  • [2] Bott, R., Shulman, H. and Stasheff, J., On the de Rham Theory of Certain Classifying Spaces. Adv. in Math. 20 (1976), 43-56.
  • [3] Brylinski, J-L., Differentiable cohomology of gauge groups, math.DG/0011069.
  • [4] Dupont, J.L., Simplicial de Rham cohomology and characteristic classes of flat bundles. Topology Vol 15(1976),233-245, Perg Press.
  • [5] Dupont, J.L., Curvature and Characteristic Classes, Lecture Notes in Math. 640, Springer Verlag, 1978.
  • [6] Mostow, M. and Perchick, J., Notes on Gel’fand-Fuks Cohomology and Characteristic Classes (Lectures by Bott). In Eleventh Holiday Symposium. New Mexico State University, December 1973.
  • [7] Segal, G., Classifying spaces and spectral sequences. Inst. Hautes Études Sci. Publ. Math. No.34 1968 105-112.
  • [8] Suzuki, N., The Chern character in the Simplicial de Rham Complex. Nihonkai Mathematical Journal Vol.26 (2015), No1, pp.1-13.
There are 8 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Naoya Suzuki This is me

Publication Date October 30, 2016
Published in Issue Year 2016

Cite

APA Suzuki, N. (2016). The Euler Class in the Simplicial de Rham Complex. International Electronic Journal of Geometry, 9(2), 36-43. https://doi.org/10.36890/iejg.584579
AMA Suzuki N. The Euler Class in the Simplicial de Rham Complex. Int. Electron. J. Geom. October 2016;9(2):36-43. doi:10.36890/iejg.584579
Chicago Suzuki, Naoya. “The Euler Class in the Simplicial De Rham Complex”. International Electronic Journal of Geometry 9, no. 2 (October 2016): 36-43. https://doi.org/10.36890/iejg.584579.
EndNote Suzuki N (October 1, 2016) The Euler Class in the Simplicial de Rham Complex. International Electronic Journal of Geometry 9 2 36–43.
IEEE N. Suzuki, “The Euler Class in the Simplicial de Rham Complex”, Int. Electron. J. Geom., vol. 9, no. 2, pp. 36–43, 2016, doi: 10.36890/iejg.584579.
ISNAD Suzuki, Naoya. “The Euler Class in the Simplicial De Rham Complex”. International Electronic Journal of Geometry 9/2 (October 2016), 36-43. https://doi.org/10.36890/iejg.584579.
JAMA Suzuki N. The Euler Class in the Simplicial de Rham Complex. Int. Electron. J. Geom. 2016;9:36–43.
MLA Suzuki, Naoya. “The Euler Class in the Simplicial De Rham Complex”. International Electronic Journal of Geometry, vol. 9, no. 2, 2016, pp. 36-43, doi:10.36890/iejg.584579.
Vancouver Suzuki N. The Euler Class in the Simplicial de Rham Complex. Int. Electron. J. Geom. 2016;9(2):36-43.