[1] Dranishnikov, A.N., Gong, G., Lafforgue, V., and Yu, G. Uniform embeddings into hilbert
space and a question of gromov, Canadian Mathematical Bulletin, 45(2002), no. 1, 60–70.
[2] Enflo, P., On a problem of Smirnov, Arkiv f¨or Matematik, 8 (1970), no. 2, 107–109.
[3] Ferry, S.C., Ranicki, A. and Rosenberg, J., Novikov conjectures, index theorems and rigidity:
Oberwolfach 1993, vol. 1, Cambridge Univ Pr, 1995.
[4] Gromov, M., Geometric group theory, Asymptotic invariants of infinite groups, vol. 2, Cam-
bridge University Press, vol. 182, 1993.
[5] Lafont, J.F., and Prassidis, S., Roundness properties of groups, Geometriae
Dedi- cata,117(2006), no. 1, 137–160.
[6] Lennard, C.J., Tonge, A.M., and Weston, A., Generalized roundness and negative
type, Michigan Math. J, 44(1997), no. 1, 37–45.
[7] Nowak, P.W., Coarse embeddings of metric spaces into banach spaces, Proceedings of the
American Mathematical Society, 133(2005), no. 9, 2589–2596.
[9] Ostrovskii, M.I., Expansion properties of metric spaces not admitting a coarse embedding into a
Hilbert space, C. R. Acad. Bulgare Sci. 62(2009), no. 4, 415–420.
[11] Yu, G., The coarse baum–connes conjecture for spaces which admit a uniform embedding
into hilbert space, Inventiones Mathematicae, 139(2000), no. 1, 201–240.
[1] Dranishnikov, A.N., Gong, G., Lafforgue, V., and Yu, G. Uniform embeddings into hilbert
space and a question of gromov, Canadian Mathematical Bulletin, 45(2002), no. 1, 60–70.
[2] Enflo, P., On a problem of Smirnov, Arkiv f¨or Matematik, 8 (1970), no. 2, 107–109.
[3] Ferry, S.C., Ranicki, A. and Rosenberg, J., Novikov conjectures, index theorems and rigidity:
Oberwolfach 1993, vol. 1, Cambridge Univ Pr, 1995.
[4] Gromov, M., Geometric group theory, Asymptotic invariants of infinite groups, vol. 2, Cam-
bridge University Press, vol. 182, 1993.
[5] Lafont, J.F., and Prassidis, S., Roundness properties of groups, Geometriae
Dedi- cata,117(2006), no. 1, 137–160.
[6] Lennard, C.J., Tonge, A.M., and Weston, A., Generalized roundness and negative
type, Michigan Math. J, 44(1997), no. 1, 37–45.
[7] Nowak, P.W., Coarse embeddings of metric spaces into banach spaces, Proceedings of the
American Mathematical Society, 133(2005), no. 9, 2589–2596.
[9] Ostrovskii, M.I., Expansion properties of metric spaces not admitting a coarse embedding into a
Hilbert space, C. R. Acad. Bulgare Sci. 62(2009), no. 4, 415–420.
[11] Yu, G., The coarse baum–connes conjecture for spaces which admit a uniform embedding
into hilbert space, Inventiones Mathematicae, 139(2000), no. 1, 201–240.
Basyrov, A., & Horak, M. (2015). A COARSELY INVARIANT NOTION OF ROUNDNESS. International Electronic Journal of Geometry, 8(2), 154-167. https://doi.org/10.36890/iejg.592303
AMA
Basyrov A, Horak M. A COARSELY INVARIANT NOTION OF ROUNDNESS. Int. Electron. J. Geom. October 2015;8(2):154-167. doi:10.36890/iejg.592303
Chicago
Basyrov, Alexander, and Matthew Horak. “A COARSELY INVARIANT NOTION OF ROUNDNESS”. International Electronic Journal of Geometry 8, no. 2 (October 2015): 154-67. https://doi.org/10.36890/iejg.592303.
EndNote
Basyrov A, Horak M (October 1, 2015) A COARSELY INVARIANT NOTION OF ROUNDNESS. International Electronic Journal of Geometry 8 2 154–167.
IEEE
A. Basyrov and M. Horak, “A COARSELY INVARIANT NOTION OF ROUNDNESS”, Int. Electron. J. Geom., vol. 8, no. 2, pp. 154–167, 2015, doi: 10.36890/iejg.592303.
ISNAD
Basyrov, Alexander - Horak, Matthew. “A COARSELY INVARIANT NOTION OF ROUNDNESS”. International Electronic Journal of Geometry 8/2 (October 2015), 154-167. https://doi.org/10.36890/iejg.592303.
JAMA
Basyrov A, Horak M. A COARSELY INVARIANT NOTION OF ROUNDNESS. Int. Electron. J. Geom. 2015;8:154–167.
MLA
Basyrov, Alexander and Matthew Horak. “A COARSELY INVARIANT NOTION OF ROUNDNESS”. International Electronic Journal of Geometry, vol. 8, no. 2, 2015, pp. 154-67, doi:10.36890/iejg.592303.
Vancouver
Basyrov A, Horak M. A COARSELY INVARIANT NOTION OF ROUNDNESS. Int. Electron. J. Geom. 2015;8(2):154-67.