Research Article
BibTex RIS Cite

ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS

Year 2015, , 168 - 180, 30.10.2015
https://doi.org/10.36890/iejg.592304

Abstract


References

  • [1] Allard, W.K. and Jr. Almgren F.J., An introduction to regularity theory for parametric elliptic variational problems. Proc.symp.PureMath., XXIII,Amer.Math.Soc.(7) 260, March 17 1973.
  • [2] Allard, W.K. and Jr. Almgren F.J., The structure of stationary one dimensional vari- folds with positive density. Inventiones mathematicae, 34:83:97, 1976.
  • [3] Jr. Almgren F.J., Plateau’s Problem An invitation to Varifold Geometry. 1966.
  • [4] Gromov, M., Singularities, expanders and topology of maps. part 1: Homology versus volume in the spaces of cycles. preprint.
  • [5] Hass, J. and Morgan, F., Geodesic nets on the 2-sphere. Proceedings of the American Math- ematical Society, 124(12):3843,3850, December 1996.
  • [6] Heppes, A., On the partition of the 2-sphere by geodesic nets. Proceedings of the American Mathematical Society, 127(7):2163, March 17 1999.
  • [7] Markvorsen, S., Minimal webs in Riemannian manifolds. Geom.Dedicata, 133, 2008.
Year 2015, , 168 - 180, 30.10.2015
https://doi.org/10.36890/iejg.592304

Abstract

References

  • [1] Allard, W.K. and Jr. Almgren F.J., An introduction to regularity theory for parametric elliptic variational problems. Proc.symp.PureMath., XXIII,Amer.Math.Soc.(7) 260, March 17 1973.
  • [2] Allard, W.K. and Jr. Almgren F.J., The structure of stationary one dimensional vari- folds with positive density. Inventiones mathematicae, 34:83:97, 1976.
  • [3] Jr. Almgren F.J., Plateau’s Problem An invitation to Varifold Geometry. 1966.
  • [4] Gromov, M., Singularities, expanders and topology of maps. part 1: Homology versus volume in the spaces of cycles. preprint.
  • [5] Hass, J. and Morgan, F., Geodesic nets on the 2-sphere. Proceedings of the American Math- ematical Society, 124(12):3843,3850, December 1996.
  • [6] Heppes, A., On the partition of the 2-sphere by geodesic nets. Proceedings of the American Mathematical Society, 127(7):2163, March 17 1999.
  • [7] Markvorsen, S., Minimal webs in Riemannian manifolds. Geom.Dedicata, 133, 2008.
There are 7 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Yashar Memarıan This is me

Publication Date October 30, 2015
Published in Issue Year 2015

Cite

APA Memarıan, Y. (2015). ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS. International Electronic Journal of Geometry, 8(2), 168-180. https://doi.org/10.36890/iejg.592304
AMA Memarıan Y. ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS. Int. Electron. J. Geom. October 2015;8(2):168-180. doi:10.36890/iejg.592304
Chicago Memarıan, Yashar. “ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS”. International Electronic Journal of Geometry 8, no. 2 (October 2015): 168-80. https://doi.org/10.36890/iejg.592304.
EndNote Memarıan Y (October 1, 2015) ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS. International Electronic Journal of Geometry 8 2 168–180.
IEEE Y. Memarıan, “ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS”, Int. Electron. J. Geom., vol. 8, no. 2, pp. 168–180, 2015, doi: 10.36890/iejg.592304.
ISNAD Memarıan, Yashar. “ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS”. International Electronic Journal of Geometry 8/2 (October 2015), 168-180. https://doi.org/10.36890/iejg.592304.
JAMA Memarıan Y. ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS. Int. Electron. J. Geom. 2015;8:168–180.
MLA Memarıan, Yashar. “ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS”. International Electronic Journal of Geometry, vol. 8, no. 2, 2015, pp. 168-80, doi:10.36890/iejg.592304.
Vancouver Memarıan Y. ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS. Int. Electron. J. Geom. 2015;8(2):168-80.