[1] Ballico, E., Subsets of the variety X ⊂ Pn evincing the X-rank of a point of Pn, preprint.
[2] Ballico, E. and Bernardi, A., Decomposition of homogeneous polynomials with low rank, Math.
Z. 271 (2012) 1141–1149.
[3] Bernardi, A., Gimigliano, A. and Idà, M., Computing symmetric rank for symmetric tensors, J.
Symbolic. Comput. 46 (2011), no. 1, 34–53.
[4] Bernardi, A. and Ranestad, K., The cactus rank of cubic forms, J. Symbolic. Comput. 50
(2013) 291–297. DOI: 10.1016/j.jsc.2012.08.001
[5] Buczyn´ska, W. and Buczynśki, J., Secant varieties to high degree veronese reembeddings,
catalecticant matrices and smoothable Gorenstein schemes. arXiv:1012.3562v4 [math.AG], J. Algebraic
Geom. (to appear).
[6] Buczynśka, W. and Buczynśki, J., On the difference between the border rank and the smooth-
able rank of a polynomial, arXiv:1305.1726.
[7] Buczynśki, J., Ginensky, A. and Landsberg, J. M., Determinantal equations for secant vari-
eties and the Eisenbud-Koh-Stillman conjecture, J. London Math. Soc. (2) 88 (2013) 1–24.
[8] Buczynśki, J. and Landsberg, J. M., Ranks of tensors and a generalization of secant varieties,
Linear Algebra Appl. 438 (2013), no. 2, 668–689.
[9] Comas, G., and Seiguer, M., On the rank of a binary form, Found. Comp. Math. 11 (2011), no. 1,
65–78.
[10] Hartshorne, R., Algebraic Geometry, Springer, Berlin, 1977.
[11] Iarrobino, A. and Kanev.,V., Power sums, Gorenstein algebras, and determinantal loci. Lec-
ture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999, Appendix C by Iarrobino and
Steven L. Kleiman.
[12] Landsberg, J. M., Tensors: Geometry and Applications, Graduate Studies in Mathematics,
Vol. 128, Amer. Math. Soc. Providence, 2012.
[1] Ballico, E., Subsets of the variety X ⊂ Pn evincing the X-rank of a point of Pn, preprint.
[2] Ballico, E. and Bernardi, A., Decomposition of homogeneous polynomials with low rank, Math.
Z. 271 (2012) 1141–1149.
[3] Bernardi, A., Gimigliano, A. and Idà, M., Computing symmetric rank for symmetric tensors, J.
Symbolic. Comput. 46 (2011), no. 1, 34–53.
[4] Bernardi, A. and Ranestad, K., The cactus rank of cubic forms, J. Symbolic. Comput. 50
(2013) 291–297. DOI: 10.1016/j.jsc.2012.08.001
[5] Buczyn´ska, W. and Buczynśki, J., Secant varieties to high degree veronese reembeddings,
catalecticant matrices and smoothable Gorenstein schemes. arXiv:1012.3562v4 [math.AG], J. Algebraic
Geom. (to appear).
[6] Buczynśka, W. and Buczynśki, J., On the difference between the border rank and the smooth-
able rank of a polynomial, arXiv:1305.1726.
[7] Buczynśki, J., Ginensky, A. and Landsberg, J. M., Determinantal equations for secant vari-
eties and the Eisenbud-Koh-Stillman conjecture, J. London Math. Soc. (2) 88 (2013) 1–24.
[8] Buczynśki, J. and Landsberg, J. M., Ranks of tensors and a generalization of secant varieties,
Linear Algebra Appl. 438 (2013), no. 2, 668–689.
[9] Comas, G., and Seiguer, M., On the rank of a binary form, Found. Comp. Math. 11 (2011), no. 1,
65–78.
[10] Hartshorne, R., Algebraic Geometry, Springer, Berlin, 1977.
[11] Iarrobino, A. and Kanev.,V., Power sums, Gorenstein algebras, and determinantal loci. Lec-
ture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999, Appendix C by Iarrobino and
Steven L. Kleiman.
[12] Landsberg, J. M., Tensors: Geometry and Applications, Graduate Studies in Mathematics,
Vol. 128, Amer. Math. Soc. Providence, 2012.
Ballıco, E. (2014). SYMMETRIC TENSOR RANK, CACTUS RANK AND RELATED COMPLEXITY MEASURES FOR HOMOGENEOUS POLYNOMIALS. International Electronic Journal of Geometry, 7(1), 126-132. https://doi.org/10.36890/iejg.594501
AMA
Ballıco E. SYMMETRIC TENSOR RANK, CACTUS RANK AND RELATED COMPLEXITY MEASURES FOR HOMOGENEOUS POLYNOMIALS. Int. Electron. J. Geom. April 2014;7(1):126-132. doi:10.36890/iejg.594501
Chicago
Ballıco, Edoardo. “SYMMETRIC TENSOR RANK, CACTUS RANK AND RELATED COMPLEXITY MEASURES FOR HOMOGENEOUS POLYNOMIALS”. International Electronic Journal of Geometry 7, no. 1 (April 2014): 126-32. https://doi.org/10.36890/iejg.594501.
EndNote
Ballıco E (April 1, 2014) SYMMETRIC TENSOR RANK, CACTUS RANK AND RELATED COMPLEXITY MEASURES FOR HOMOGENEOUS POLYNOMIALS. International Electronic Journal of Geometry 7 1 126–132.
IEEE
E. Ballıco, “SYMMETRIC TENSOR RANK, CACTUS RANK AND RELATED COMPLEXITY MEASURES FOR HOMOGENEOUS POLYNOMIALS”, Int. Electron. J. Geom., vol. 7, no. 1, pp. 126–132, 2014, doi: 10.36890/iejg.594501.
ISNAD
Ballıco, Edoardo. “SYMMETRIC TENSOR RANK, CACTUS RANK AND RELATED COMPLEXITY MEASURES FOR HOMOGENEOUS POLYNOMIALS”. International Electronic Journal of Geometry 7/1 (April 2014), 126-132. https://doi.org/10.36890/iejg.594501.
JAMA
Ballıco E. SYMMETRIC TENSOR RANK, CACTUS RANK AND RELATED COMPLEXITY MEASURES FOR HOMOGENEOUS POLYNOMIALS. Int. Electron. J. Geom. 2014;7:126–132.
MLA
Ballıco, Edoardo. “SYMMETRIC TENSOR RANK, CACTUS RANK AND RELATED COMPLEXITY MEASURES FOR HOMOGENEOUS POLYNOMIALS”. International Electronic Journal of Geometry, vol. 7, no. 1, 2014, pp. 126-32, doi:10.36890/iejg.594501.
Vancouver
Ballıco E. SYMMETRIC TENSOR RANK, CACTUS RANK AND RELATED COMPLEXITY MEASURES FOR HOMOGENEOUS POLYNOMIALS. Int. Electron. J. Geom. 2014;7(1):126-32.