[1] Barbosa, E. and Ribeiro, E., On conformal solutions of the yamabe flow. Archiv der Mathematik
101 (2013), 79-89.
[2] Cao, H-D., Sun, X. and Zhang, Y., On the structure of gradient yamabe solitons. Mathematical
Research Letters 19 (2012), 767-774.
[3] De, U. C., Turan, M., Yıldız, A. and De, A., Ricci solitons and gradient Ricci solitons on
3-dimensional normal almost contact metric manifolds. Publicationes Mathematica Debrecen 80 (2012),
127-142.
[4] Dobarro, F. and Ünal, B., Curvature of multiply warped products. Journal of Geometry and
Physics 55 (2005), 75-106.
[5] Feitosa, F. E. S., Freitas, A. A. and Gomes, J. N. V., On the construction of gradient Ricci
soliton warped product. Nonlinear Analysis 161 (2017), 30-43.
[6] He, C., Petersen, P. and Wylie, W., Warped product rigidity. Asian J. Math. 19 (2015),
135-170. [7] He, C., Gradient Yamabe solitons on warped products. arXiv preprint arXiv:1109.2343,
(2011).
[8] Karaca, F. and Özgür, C., Gradient Ricci Solitons on Multiply Warped Product Manifolds.
Filomat 32 (2018), 4221-4228.
[9] Lee, S. D., Kim, B. H. and Choi, J. H., On a classification of warped product spaces with
gradient Ricci solitons. The Korean Journal of Mathematics 24 (2016), 627-636.
[10] Lee, S. D., Kim, B. H. and Choi, J. H., Warped product spaces with Ricci conditions. Turkish
Journal of Mathematics 41 (2017), 1365-1375.
[11] Ma, L. and Miquel, V., Remarks on scalar
curvature of Yamabe solitons. Annals of Global Analysis and Geometry 42 (2012), 195-205.
[12] Neto, B. L. and Tenenblat, K., On gradient yamabe solitons conformal to a pseudoeuclidian
space. Journal of Geometry and Physics 123 (2018), 284-291.
[13] Sousa, M. L. and Pina, R., Gradient ricci solitons with structure of warped product. Results
in Mathematics 71(3-4) (2017), 825-840.
[14] Ünal, B., Doubly warped products. Ph.D. Thesis, University of Missouri-Columbia, 2000.
[15] Ünal, B., Multiply warped products. Journal of Geometry and Physics 34 (2000), 287-301.
[16] Tokura, W., Adriano, L., Pina, R. and Barboza, M., On warped product gradient Yamabe
solitons. Journal of Mathematical Analysis and Applications 473(1) (2019), 201-214.
[17] Turan, M., De, U. C. and Yıldız, A., Ricci solitons and gradient Ricci solitons in
three-dimensional trans-Sasakian manifolds. Filomat 26(2)
(2012), 363-370.
Gradient Yamabe Solitons on Multiply Warped Product Manifolds
[1] Barbosa, E. and Ribeiro, E., On conformal solutions of the yamabe flow. Archiv der Mathematik
101 (2013), 79-89.
[2] Cao, H-D., Sun, X. and Zhang, Y., On the structure of gradient yamabe solitons. Mathematical
Research Letters 19 (2012), 767-774.
[3] De, U. C., Turan, M., Yıldız, A. and De, A., Ricci solitons and gradient Ricci solitons on
3-dimensional normal almost contact metric manifolds. Publicationes Mathematica Debrecen 80 (2012),
127-142.
[4] Dobarro, F. and Ünal, B., Curvature of multiply warped products. Journal of Geometry and
Physics 55 (2005), 75-106.
[5] Feitosa, F. E. S., Freitas, A. A. and Gomes, J. N. V., On the construction of gradient Ricci
soliton warped product. Nonlinear Analysis 161 (2017), 30-43.
[6] He, C., Petersen, P. and Wylie, W., Warped product rigidity. Asian J. Math. 19 (2015),
135-170. [7] He, C., Gradient Yamabe solitons on warped products. arXiv preprint arXiv:1109.2343,
(2011).
[8] Karaca, F. and Özgür, C., Gradient Ricci Solitons on Multiply Warped Product Manifolds.
Filomat 32 (2018), 4221-4228.
[9] Lee, S. D., Kim, B. H. and Choi, J. H., On a classification of warped product spaces with
gradient Ricci solitons. The Korean Journal of Mathematics 24 (2016), 627-636.
[10] Lee, S. D., Kim, B. H. and Choi, J. H., Warped product spaces with Ricci conditions. Turkish
Journal of Mathematics 41 (2017), 1365-1375.
[11] Ma, L. and Miquel, V., Remarks on scalar
curvature of Yamabe solitons. Annals of Global Analysis and Geometry 42 (2012), 195-205.
[12] Neto, B. L. and Tenenblat, K., On gradient yamabe solitons conformal to a pseudoeuclidian
space. Journal of Geometry and Physics 123 (2018), 284-291.
[13] Sousa, M. L. and Pina, R., Gradient ricci solitons with structure of warped product. Results
in Mathematics 71(3-4) (2017), 825-840.
[14] Ünal, B., Doubly warped products. Ph.D. Thesis, University of Missouri-Columbia, 2000.
[15] Ünal, B., Multiply warped products. Journal of Geometry and Physics 34 (2000), 287-301.
[16] Tokura, W., Adriano, L., Pina, R. and Barboza, M., On warped product gradient Yamabe
solitons. Journal of Mathematical Analysis and Applications 473(1) (2019), 201-214.
[17] Turan, M., De, U. C. and Yıldız, A., Ricci solitons and gradient Ricci solitons in
three-dimensional trans-Sasakian manifolds. Filomat 26(2)
(2012), 363-370.
Karaca, F. (2019). Gradient Yamabe Solitons on Multiply Warped Product Manifolds. International Electronic Journal of Geometry, 12(2), 157-168. https://doi.org/10.36890/iejg.628073
AMA
Karaca F. Gradient Yamabe Solitons on Multiply Warped Product Manifolds. Int. Electron. J. Geom. October 2019;12(2):157-168. doi:10.36890/iejg.628073
Chicago
Karaca, Fatma. “Gradient Yamabe Solitons on Multiply Warped Product Manifolds”. International Electronic Journal of Geometry 12, no. 2 (October 2019): 157-68. https://doi.org/10.36890/iejg.628073.
EndNote
Karaca F (October 1, 2019) Gradient Yamabe Solitons on Multiply Warped Product Manifolds. International Electronic Journal of Geometry 12 2 157–168.
IEEE
F. Karaca, “Gradient Yamabe Solitons on Multiply Warped Product Manifolds”, Int. Electron. J. Geom., vol. 12, no. 2, pp. 157–168, 2019, doi: 10.36890/iejg.628073.
ISNAD
Karaca, Fatma. “Gradient Yamabe Solitons on Multiply Warped Product Manifolds”. International Electronic Journal of Geometry 12/2 (October 2019), 157-168. https://doi.org/10.36890/iejg.628073.
JAMA
Karaca F. Gradient Yamabe Solitons on Multiply Warped Product Manifolds. Int. Electron. J. Geom. 2019;12:157–168.
MLA
Karaca, Fatma. “Gradient Yamabe Solitons on Multiply Warped Product Manifolds”. International Electronic Journal of Geometry, vol. 12, no. 2, 2019, pp. 157-68, doi:10.36890/iejg.628073.
Vancouver
Karaca F. Gradient Yamabe Solitons on Multiply Warped Product Manifolds. Int. Electron. J. Geom. 2019;12(2):157-68.