Research Article
BibTex RIS Cite

Pseudo Cauchy Riemann and Framed Manifolds with Physical Applications

Year 2020, , 61 - 73, 30.01.2020
https://doi.org/10.36890/iejg.655974

Abstract

We introduce a pseudo Cauchy Riemann(PCR)-structure defined by a real tensor field $\bar{J}$ of type $(1, 1)$ of a real semi-Riemannian manifold $(\bar{M}, \bar{g})$ such that $\bar{J}^2 = \lambda^2 I$, where $\lambda$ is a function on $\bar{M}$. We prove that, contrary to the even dimensional CR-manifolds, a PCR-manifold is not necessarily of even dimension if $\lambda$ is every where non-zero real function on $\bar{M}$, supported by two odd dimensional examples and one physical model. The metric of PCR-manifold is not severely restricted. Then, we define a pseudo framed(PF)-manifold $(M, g)$ by a real tensor field $f$ such that $f^3 = \lambda^2 f$, where $T(M)$ splits into a direct sum of two subbundles, namely $im(f)$ (with a PCR-structure) and $ ker(f)$, supported by some mathematical and physical examples. Finally, we study a revised version of a contact manifold, called contact PF-manifold, which is a particular case of a PF-manifold where dim$(ker(f))=1$. Contrary to the odd dimensional contact manifolds, there do exist even dimensional contact PF-manifolds. We also propose several open problems.

Supporting Institution

University of Windsor

References

  • [1] Beem, J. K., Ehrlich, P. E.: Global Lorentzian Geometry. Marcel Dekker Inc. New York (1981). Second Edition (with Easley, K. L.) (1996).
  • [2] Bejancu, A.: Geometry of CR-submanifolds. D. Reidel Publishing Company. Boston (1986).
  • [3] Blair, D. E.: Contact manifolds in Riemannian geometry. Lecture notes in Math. Springer-Verlag. Berlin (1976).
  • [4] Blair, D. E.: Geometry of manifolds with structure group U(n) × O(s). J. Diff. Geometry 4, 155–167 (1970).
  • [5] Duggal, K. L.: Spacetime manifolds and contact structures. Int. J. Math. & Math. Sci. 13, 545–554 (1990).
  • [6] Duggal K. L.: Warped product of lightlike manifolds. Nonlinear Anal. 47, 3061-3072 (2001).
  • [7] Duggal, K. L., Jin, D. H.: Null Curves and Hypersurfaces of Semi-Riemannian Manifolds. World Scientific (2007).
  • [8] Duggal, K. L., Sahin, B.: Differential geometry of lightlike submanifolds. Birkhäuser (2010).
  • [9] Duggal, K. L., Sharma, R.: Symmetries of spacetimes and Riemannian manifolds. Kluwer Academic Publishers (1999).
  • [10] Eliopoulos, H.: On the general theory of differentiable manifolds with almost tangent structure. Canad. Math. Bull. 8, 721–748 (1965).
  • [11] Flaherty, E. T.: Hermitian and Kählerian Geometry in Relativity. Lecture Notes in Physics. Springer-Verlag. Berlin (1976).
  • [12] Gray, A., Hervella, L. M.: The sixteen classes of almost Hermitian manifolds. Ann. Mt. Pura Appli. 123, 35–58 (1980).
  • [13] Kaehler, E.: Über eine bemerkenswerte Hermitische metrik. Abh. Math. Sem. Hamburg 9, 173-186 (1933).
  • [14] Legrand, G.: Sur les variéteś à structure de presque produit complexe. C.R. Acad. Sci. Paris 242, 335–337 (1956).
  • [15] Middleton. C. A., Stanley. E.: Anisotropic evolution of 5D Friedmann-Robertson-Walker spacetime. Phys. Rev. D84 085013, (2011).
  • [16] Newlander, A., Nirenberg, L.: Complex analytic coordinates in almost complex manifolds. Ann. Math. 65, 391–404 (1957).
  • [17] O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press. New York (1983).
  • [18] Penrose, R.: Physical spacetime and non realizable CR-structure. Proc. of symposia in Pure Math. 39, 401–422 (1983).
  • [19] Walker, A. G.: Completely symmetric spaces. J. Lond. Math. Soc. 19, 219–226 (1944).
  • [20] Yano, K.: On a structure defined by a tensor field of type (1,1) satisfying $f^3 + f = 0$. Tensor N.S. 14, 99–109 (1963)
Year 2020, , 61 - 73, 30.01.2020
https://doi.org/10.36890/iejg.655974

Abstract

References

  • [1] Beem, J. K., Ehrlich, P. E.: Global Lorentzian Geometry. Marcel Dekker Inc. New York (1981). Second Edition (with Easley, K. L.) (1996).
  • [2] Bejancu, A.: Geometry of CR-submanifolds. D. Reidel Publishing Company. Boston (1986).
  • [3] Blair, D. E.: Contact manifolds in Riemannian geometry. Lecture notes in Math. Springer-Verlag. Berlin (1976).
  • [4] Blair, D. E.: Geometry of manifolds with structure group U(n) × O(s). J. Diff. Geometry 4, 155–167 (1970).
  • [5] Duggal, K. L.: Spacetime manifolds and contact structures. Int. J. Math. & Math. Sci. 13, 545–554 (1990).
  • [6] Duggal K. L.: Warped product of lightlike manifolds. Nonlinear Anal. 47, 3061-3072 (2001).
  • [7] Duggal, K. L., Jin, D. H.: Null Curves and Hypersurfaces of Semi-Riemannian Manifolds. World Scientific (2007).
  • [8] Duggal, K. L., Sahin, B.: Differential geometry of lightlike submanifolds. Birkhäuser (2010).
  • [9] Duggal, K. L., Sharma, R.: Symmetries of spacetimes and Riemannian manifolds. Kluwer Academic Publishers (1999).
  • [10] Eliopoulos, H.: On the general theory of differentiable manifolds with almost tangent structure. Canad. Math. Bull. 8, 721–748 (1965).
  • [11] Flaherty, E. T.: Hermitian and Kählerian Geometry in Relativity. Lecture Notes in Physics. Springer-Verlag. Berlin (1976).
  • [12] Gray, A., Hervella, L. M.: The sixteen classes of almost Hermitian manifolds. Ann. Mt. Pura Appli. 123, 35–58 (1980).
  • [13] Kaehler, E.: Über eine bemerkenswerte Hermitische metrik. Abh. Math. Sem. Hamburg 9, 173-186 (1933).
  • [14] Legrand, G.: Sur les variéteś à structure de presque produit complexe. C.R. Acad. Sci. Paris 242, 335–337 (1956).
  • [15] Middleton. C. A., Stanley. E.: Anisotropic evolution of 5D Friedmann-Robertson-Walker spacetime. Phys. Rev. D84 085013, (2011).
  • [16] Newlander, A., Nirenberg, L.: Complex analytic coordinates in almost complex manifolds. Ann. Math. 65, 391–404 (1957).
  • [17] O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press. New York (1983).
  • [18] Penrose, R.: Physical spacetime and non realizable CR-structure. Proc. of symposia in Pure Math. 39, 401–422 (1983).
  • [19] Walker, A. G.: Completely symmetric spaces. J. Lond. Math. Soc. 19, 219–226 (1944).
  • [20] Yano, K.: On a structure defined by a tensor field of type (1,1) satisfying $f^3 + f = 0$. Tensor N.S. 14, 99–109 (1963)
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Krishan Lal Duggal 0000-0003-2967-2727

Publication Date January 30, 2020
Acceptance Date February 22, 2020
Published in Issue Year 2020

Cite

APA Duggal, K. L. (2020). Pseudo Cauchy Riemann and Framed Manifolds with Physical Applications. International Electronic Journal of Geometry, 13(1), 61-73. https://doi.org/10.36890/iejg.655974
AMA Duggal KL. Pseudo Cauchy Riemann and Framed Manifolds with Physical Applications. Int. Electron. J. Geom. January 2020;13(1):61-73. doi:10.36890/iejg.655974
Chicago Duggal, Krishan Lal. “Pseudo Cauchy Riemann and Framed Manifolds With Physical Applications”. International Electronic Journal of Geometry 13, no. 1 (January 2020): 61-73. https://doi.org/10.36890/iejg.655974.
EndNote Duggal KL (January 1, 2020) Pseudo Cauchy Riemann and Framed Manifolds with Physical Applications. International Electronic Journal of Geometry 13 1 61–73.
IEEE K. L. Duggal, “Pseudo Cauchy Riemann and Framed Manifolds with Physical Applications”, Int. Electron. J. Geom., vol. 13, no. 1, pp. 61–73, 2020, doi: 10.36890/iejg.655974.
ISNAD Duggal, Krishan Lal. “Pseudo Cauchy Riemann and Framed Manifolds With Physical Applications”. International Electronic Journal of Geometry 13/1 (January 2020), 61-73. https://doi.org/10.36890/iejg.655974.
JAMA Duggal KL. Pseudo Cauchy Riemann and Framed Manifolds with Physical Applications. Int. Electron. J. Geom. 2020;13:61–73.
MLA Duggal, Krishan Lal. “Pseudo Cauchy Riemann and Framed Manifolds With Physical Applications”. International Electronic Journal of Geometry, vol. 13, no. 1, 2020, pp. 61-73, doi:10.36890/iejg.655974.
Vancouver Duggal KL. Pseudo Cauchy Riemann and Framed Manifolds with Physical Applications. Int. Electron. J. Geom. 2020;13(1):61-73.

Cited By