Year 2020,
, 107 - 115, 30.01.2020
İlhan Karakılıç
Soner Erkuş
References
- [1] Paraskevopoulos, E., Natsiavas, S.: A new look into the kinematics and dynamics of finite rigid body rotations using Lie group theory . International
Journal of Solids and Structures. 50(1), 57–72 (2013).
- [2] Müller, H.R.: Sphärische Kinematik. Berlin: Deutscher Verlag der Wissenschaften (1962).
- [3] Karakılıç, I.: The Dual Rodrigues Parameters, International Journal of Engineering and Applied Sciences. 2(2), 23–32 (2010).
- [4] Karakılıç, I.: Expression of Dual Euler Parameters Using the Dual Rodrigues Parameters and Their Application to the Screw Transformation.
Mathematical and Computational Applications, 16(3), 680–689 (2011).
- [5] Gallier, J.: Geometric Methods and Applications for Computer Science and Engineering. Springer-Verlag (2000).
- [6] McCarthy, J.M.: An Introduction to Theoretical Kinematics. MIT Press (1990).
- [7] Selig, J.M.: Cayley maps for SE(3). The International Federation of Theory of Machines and Mechanisms 12th World Congress, Besancon
(2007).
- [8] Selig, J.M.: Centrodes and Lie Algebra. The International Federation of Theory of Machines and Mechanisms 12th World Congress, Besancon
(2007).
- [9] Selig, J.M.: Geometric Fundamentals of Robotics. Ed:Gries D., Schneider T.R., Second Edition, Springer-Verlag, London (2005).
- [10] Selig, J.M.: Introductory Robotics. Prentice-Hall International Ltd, UK (1992).
- [11] Selig, J.M.: Lie Groups and Lie Algebras in Robotics. Lecture Notes. South Bank University London SE1 0AA, U.K., 101-125 (2006).
- [12] Selig, J.M.: On the Geometry of Point-Plane Constraints on Rigid-Body Displacements. Acta Applicandae Mathematicae. 116(2), 133–155 (2011).
- [13] Overfeli, M., Kumar, V., Harwin, W.S.: Methods for Kinematic Modeling of Biological and Robotic Systems. Medical Engineering and Physics
22, 509–520 (2000).
- [14] Bottema, O., Roth, B.: Theoretical Kinematics. North-Holland Publishing, Amsterdam. Reprinted by Dover, New York (1990).
- [15] Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994).
- [16] Ebetiuc, S., Staab, H.: Applying Differential Geometry to Kinematic Modelling in Mobile Robotics. WSEAS Int. Conf. On Dynamical Systems
and Control, Venice, Italy, 106–112 (2005).
Kinematic Comparison of Exponential and Cayley Maps in the Planar Motion Group
Year 2020,
, 107 - 115, 30.01.2020
İlhan Karakılıç
Soner Erkuş
Abstract
In this work, the exponential and the Cayley maps, from the Lie algebra $\mathfrak{se(2)}$ of the planar motion group $SE(2)$, to the group itself are studied. The comparison between these maps on $SE(2)$ is given by using the Rodrigues vector. A three joint mechanism is discussed as an application.
References
- [1] Paraskevopoulos, E., Natsiavas, S.: A new look into the kinematics and dynamics of finite rigid body rotations using Lie group theory . International
Journal of Solids and Structures. 50(1), 57–72 (2013).
- [2] Müller, H.R.: Sphärische Kinematik. Berlin: Deutscher Verlag der Wissenschaften (1962).
- [3] Karakılıç, I.: The Dual Rodrigues Parameters, International Journal of Engineering and Applied Sciences. 2(2), 23–32 (2010).
- [4] Karakılıç, I.: Expression of Dual Euler Parameters Using the Dual Rodrigues Parameters and Their Application to the Screw Transformation.
Mathematical and Computational Applications, 16(3), 680–689 (2011).
- [5] Gallier, J.: Geometric Methods and Applications for Computer Science and Engineering. Springer-Verlag (2000).
- [6] McCarthy, J.M.: An Introduction to Theoretical Kinematics. MIT Press (1990).
- [7] Selig, J.M.: Cayley maps for SE(3). The International Federation of Theory of Machines and Mechanisms 12th World Congress, Besancon
(2007).
- [8] Selig, J.M.: Centrodes and Lie Algebra. The International Federation of Theory of Machines and Mechanisms 12th World Congress, Besancon
(2007).
- [9] Selig, J.M.: Geometric Fundamentals of Robotics. Ed:Gries D., Schneider T.R., Second Edition, Springer-Verlag, London (2005).
- [10] Selig, J.M.: Introductory Robotics. Prentice-Hall International Ltd, UK (1992).
- [11] Selig, J.M.: Lie Groups and Lie Algebras in Robotics. Lecture Notes. South Bank University London SE1 0AA, U.K., 101-125 (2006).
- [12] Selig, J.M.: On the Geometry of Point-Plane Constraints on Rigid-Body Displacements. Acta Applicandae Mathematicae. 116(2), 133–155 (2011).
- [13] Overfeli, M., Kumar, V., Harwin, W.S.: Methods for Kinematic Modeling of Biological and Robotic Systems. Medical Engineering and Physics
22, 509–520 (2000).
- [14] Bottema, O., Roth, B.: Theoretical Kinematics. North-Holland Publishing, Amsterdam. Reprinted by Dover, New York (1990).
- [15] Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994).
- [16] Ebetiuc, S., Staab, H.: Applying Differential Geometry to Kinematic Modelling in Mobile Robotics. WSEAS Int. Conf. On Dynamical Systems
and Control, Venice, Italy, 106–112 (2005).