Research Article
BibTex RIS Cite

Symmetric Masking Function of Segments

Year 2020, , 45 - 51, 15.10.2020
https://doi.org/10.36890/iejg.742248

Abstract

We show that the masking function of two segments on a surrounding circle C is symmetric to a straight line sigma passing through the centre of C if and only if the set of the segments is also symmetric to sigma.dcasvafsvfvaoıhafofnvofaso pafonvpıafv982bvpkfqvbkapsfbvkjabf fkasfjbvlkfpvnbapbıpbvf8 fsjvbapfkvbapıhbvpıqbfjlbsfvşfuful şkjnbqfjkvbqşıbpqbfkvjbşqkefbvş şşqffekjbvpkwebfvpejwfbvpewıbfıvbewqhnbvşkjfkfqlvkqfbvohhqf vuhqbefvbqfvlbfsjhvbf  lqbvıqprbfvıqrw898328ru2194r9183hvpıqfvplqfıjbvqpefv vfkqfevbqefkvbıqef ıoqefbvpıqefvbqvklfebvıpwebvfıbweıp

References

  • [1] Kincses, J. and Kurusa, Á.: : Can you recognise the shape of a figure by its shadows?, Beiträge zur Alg. und Geom., 36, 25-35 (1995).
  • [2] Kurusa, Á.:, : Visual distinguishability of segments, Int. Electron. J. Geom., 6, 56-67 (2013).
  • [3] Kurusa, Á.:, : Visual distinguishability of polygons, Beiträge zur Alg. und Geom., 54 , 659-667 (2013), https://doi.org/10.1007/s13366-012-0121-7
  • [4] Kurusa, Á.:, : You can recognize the shape of a figure by its shadows!, Geom. Dedicata, 59, 113-125 (1996); https://doi.org/10.1007/BF00155723
  • [5] Kurusa, Á.:, : Can you see the bubbles in a foam?, Acta Sci. Math. (Szeged) 82, 663–694 (2016); https://doi.org/10.14232/actasm-015-299-1
  • [6] Lukács, P.:, : Szakaszok takarási száma, Polygon, xxiv, 29-42 (in Hungarian) (2017).
Year 2020, , 45 - 51, 15.10.2020
https://doi.org/10.36890/iejg.742248

Abstract

References

  • [1] Kincses, J. and Kurusa, Á.: : Can you recognise the shape of a figure by its shadows?, Beiträge zur Alg. und Geom., 36, 25-35 (1995).
  • [2] Kurusa, Á.:, : Visual distinguishability of segments, Int. Electron. J. Geom., 6, 56-67 (2013).
  • [3] Kurusa, Á.:, : Visual distinguishability of polygons, Beiträge zur Alg. und Geom., 54 , 659-667 (2013), https://doi.org/10.1007/s13366-012-0121-7
  • [4] Kurusa, Á.:, : You can recognize the shape of a figure by its shadows!, Geom. Dedicata, 59, 113-125 (1996); https://doi.org/10.1007/BF00155723
  • [5] Kurusa, Á.:, : Can you see the bubbles in a foam?, Acta Sci. Math. (Szeged) 82, 663–694 (2016); https://doi.org/10.14232/actasm-015-299-1
  • [6] Lukács, P.:, : Szakaszok takarási száma, Polygon, xxiv, 29-42 (in Hungarian) (2017).
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Péter Lukács 0000-0001-5790-9715

Publication Date October 15, 2020
Acceptance Date May 24, 2020
Published in Issue Year 2020

Cite

APA Lukács, P. (2020). Symmetric Masking Function of Segments. International Electronic Journal of Geometry, 13(2), 45-51. https://doi.org/10.36890/iejg.742248
AMA Lukács P. Symmetric Masking Function of Segments. Int. Electron. J. Geom. October 2020;13(2):45-51. doi:10.36890/iejg.742248
Chicago Lukács, Péter. “Symmetric Masking Function of Segments”. International Electronic Journal of Geometry 13, no. 2 (October 2020): 45-51. https://doi.org/10.36890/iejg.742248.
EndNote Lukács P (October 1, 2020) Symmetric Masking Function of Segments. International Electronic Journal of Geometry 13 2 45–51.
IEEE P. Lukács, “Symmetric Masking Function of Segments”, Int. Electron. J. Geom., vol. 13, no. 2, pp. 45–51, 2020, doi: 10.36890/iejg.742248.
ISNAD Lukács, Péter. “Symmetric Masking Function of Segments”. International Electronic Journal of Geometry 13/2 (October 2020), 45-51. https://doi.org/10.36890/iejg.742248.
JAMA Lukács P. Symmetric Masking Function of Segments. Int. Electron. J. Geom. 2020;13:45–51.
MLA Lukács, Péter. “Symmetric Masking Function of Segments”. International Electronic Journal of Geometry, vol. 13, no. 2, 2020, pp. 45-51, doi:10.36890/iejg.742248.
Vancouver Lukács P. Symmetric Masking Function of Segments. Int. Electron. J. Geom. 2020;13(2):45-51.