Research Article
BibTex RIS Cite

A δ-Invariant for QR-Submanifolds in Quaternion Space Forms

Year 2018, Volume: 11 Issue: 2, 8 - 17, 30.11.2018
https://doi.org/10.36890/iejg.545112

Abstract


References

  • [1] Al-Solamy, F., Chen, B.-Y. and Deshmukh, S., Two optimal inequalities for anti-holomorphic submanifolds and their applications, Taiwanese J. Math. 18 (2014), no.1, 199-217.
  • [2] Bejancu, A., QR-submanifolds of quaternion Kaehler manifolds, Chinese J. Math. 14 (1986), no. 2, 81-94.
  • [3] Chen, B.-Y., CR-submanifolds of a Kaehler manifold, J. Diff. Geom. 16 (1981), 305-323.
  • [4] Chen, B.-Y., An optimal inequality for CR-warped products in complex space forms involving CR δ--invariant, Internat. J. Math. 23 (2012), no. 3, 1250045 (17 pages).
  • [5] Macsim, G. and Mihai, A., An inequality on quaternionic CR-submanifolds, Ann. Univ. Ovidius Constan¸ta, XXVI (2018), no. 3, to appear.
  • [6] Nash, J. F., The imbedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20-63.
  • [7] Oprea, T., Optimizations on Riemannian submanifolds, Analele Univ. Buc. LIV 1 (2005), 127-136.
  • [8] Sahin, B., On QR-submanifolds of a quaternionic space forms, Turkish J. Math. 25 (2001), 413-425.
Year 2018, Volume: 11 Issue: 2, 8 - 17, 30.11.2018
https://doi.org/10.36890/iejg.545112

Abstract

References

  • [1] Al-Solamy, F., Chen, B.-Y. and Deshmukh, S., Two optimal inequalities for anti-holomorphic submanifolds and their applications, Taiwanese J. Math. 18 (2014), no.1, 199-217.
  • [2] Bejancu, A., QR-submanifolds of quaternion Kaehler manifolds, Chinese J. Math. 14 (1986), no. 2, 81-94.
  • [3] Chen, B.-Y., CR-submanifolds of a Kaehler manifold, J. Diff. Geom. 16 (1981), 305-323.
  • [4] Chen, B.-Y., An optimal inequality for CR-warped products in complex space forms involving CR δ--invariant, Internat. J. Math. 23 (2012), no. 3, 1250045 (17 pages).
  • [5] Macsim, G. and Mihai, A., An inequality on quaternionic CR-submanifolds, Ann. Univ. Ovidius Constan¸ta, XXVI (2018), no. 3, to appear.
  • [6] Nash, J. F., The imbedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20-63.
  • [7] Oprea, T., Optimizations on Riemannian submanifolds, Analele Univ. Buc. LIV 1 (2005), 127-136.
  • [8] Sahin, B., On QR-submanifolds of a quaternionic space forms, Turkish J. Math. 25 (2001), 413-425.
There are 8 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Gabriel Macsim This is me

Adela Mihai

Publication Date November 30, 2018
Published in Issue Year 2018 Volume: 11 Issue: 2

Cite

APA Macsim, G., & Mihai, A. (2018). A δ-Invariant for QR-Submanifolds in Quaternion Space Forms. International Electronic Journal of Geometry, 11(2), 8-17. https://doi.org/10.36890/iejg.545112
AMA Macsim G, Mihai A. A δ-Invariant for QR-Submanifolds in Quaternion Space Forms. Int. Electron. J. Geom. November 2018;11(2):8-17. doi:10.36890/iejg.545112
Chicago Macsim, Gabriel, and Adela Mihai. “A δ-Invariant for QR-Submanifolds in Quaternion Space Forms”. International Electronic Journal of Geometry 11, no. 2 (November 2018): 8-17. https://doi.org/10.36890/iejg.545112.
EndNote Macsim G, Mihai A (November 1, 2018) A δ-Invariant for QR-Submanifolds in Quaternion Space Forms. International Electronic Journal of Geometry 11 2 8–17.
IEEE G. Macsim and A. Mihai, “A δ-Invariant for QR-Submanifolds in Quaternion Space Forms”, Int. Electron. J. Geom., vol. 11, no. 2, pp. 8–17, 2018, doi: 10.36890/iejg.545112.
ISNAD Macsim, Gabriel - Mihai, Adela. “A δ-Invariant for QR-Submanifolds in Quaternion Space Forms”. International Electronic Journal of Geometry 11/2 (November 2018), 8-17. https://doi.org/10.36890/iejg.545112.
JAMA Macsim G, Mihai A. A δ-Invariant for QR-Submanifolds in Quaternion Space Forms. Int. Electron. J. Geom. 2018;11:8–17.
MLA Macsim, Gabriel and Adela Mihai. “A δ-Invariant for QR-Submanifolds in Quaternion Space Forms”. International Electronic Journal of Geometry, vol. 11, no. 2, 2018, pp. 8-17, doi:10.36890/iejg.545112.
Vancouver Macsim G, Mihai A. A δ-Invariant for QR-Submanifolds in Quaternion Space Forms. Int. Electron. J. Geom. 2018;11(2):8-17.