Research Article
BibTex RIS Cite
Year 2018, Volume: 11 Issue: 2, 120 - 125, 30.11.2018
https://doi.org/10.36890/iejg.545141

Abstract

References

  • [1] Çöken, A.C. and Çiftçi U., On Null Curves on surfaces and null vectors in Lorentz space, SDU Jounal of Science, 2 (2007) ; 111 - 116:
  • [2] Duggal, Krishan L. And Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers, Dordrecht, 1996.
  • [3] Ferràndez, A., Giménez, A. and Lucas, P., Null helices in Lorentzian space forms, Internat. J. Modern Phys. A., 16(2001), 4845 - 4863.
  • [4] Lopez, R. , Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 7 (2014) ; 44 -107.
  • [5] Manning, G.S., Relaxed elastic line on a curved surface, Quart. Appl. Math., 45 (1987); no. 3, 515 - 527.
  • [6] Nickerson H.K. and Manning, G.S., Intrinsic equations for a relaxed elastic line on an oriented surface, Geom. Dedicata., 27 (1988); no. 2, 127 - 136.
  • [7] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Pres., New York, 1993.
  • [8] Weinstock, R., Calculus of Variations with Applications to Physics and Engineering. Dover Publications Inc., 1974.
  • [9] Yücesan, A., Çöken, A. C., Ayyıldız, N. and Manning, G.S., On the Relaxed Elastic Line on Pseudo-Hypersurfaces in Pseudo-Euclidean Spaces. Applied Mathematics and Computation. 155 (2004), no.2, 353-372:

A Curvature Energy Problem on a Timelike Surface

Year 2018, Volume: 11 Issue: 2, 120 - 125, 30.11.2018
https://doi.org/10.36890/iejg.545141

Abstract

We present a variational study of finding null relaxed elastic lines which are extremals of a
geometric energy functional, subject to suitable constraints and boundary conditions on a timelike
surface in Minkowski 3-space. We derive an Euler-Lagrange equation for a null relaxed elastic
line with regard to geodesic curvature, geodesic torsion and normal curvature of the curve on the
timelike surface. Finally, we give some examples for null relaxed elastic lines on the pseudo-sphere
and pseudo-cylinder.

References

  • [1] Çöken, A.C. and Çiftçi U., On Null Curves on surfaces and null vectors in Lorentz space, SDU Jounal of Science, 2 (2007) ; 111 - 116:
  • [2] Duggal, Krishan L. And Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers, Dordrecht, 1996.
  • [3] Ferràndez, A., Giménez, A. and Lucas, P., Null helices in Lorentzian space forms, Internat. J. Modern Phys. A., 16(2001), 4845 - 4863.
  • [4] Lopez, R. , Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 7 (2014) ; 44 -107.
  • [5] Manning, G.S., Relaxed elastic line on a curved surface, Quart. Appl. Math., 45 (1987); no. 3, 515 - 527.
  • [6] Nickerson H.K. and Manning, G.S., Intrinsic equations for a relaxed elastic line on an oriented surface, Geom. Dedicata., 27 (1988); no. 2, 127 - 136.
  • [7] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Pres., New York, 1993.
  • [8] Weinstock, R., Calculus of Variations with Applications to Physics and Engineering. Dover Publications Inc., 1974.
  • [9] Yücesan, A., Çöken, A. C., Ayyıldız, N. and Manning, G.S., On the Relaxed Elastic Line on Pseudo-Hypersurfaces in Pseudo-Euclidean Spaces. Applied Mathematics and Computation. 155 (2004), no.2, 353-372:
There are 9 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Gözde Özkan Tükel This is me

Ahmet Yücesan

Publication Date November 30, 2018
Published in Issue Year 2018 Volume: 11 Issue: 2

Cite

APA Tükel, G. Ö., & Yücesan, A. (2018). A Curvature Energy Problem on a Timelike Surface. International Electronic Journal of Geometry, 11(2), 120-125. https://doi.org/10.36890/iejg.545141
AMA Tükel GÖ, Yücesan A. A Curvature Energy Problem on a Timelike Surface. Int. Electron. J. Geom. November 2018;11(2):120-125. doi:10.36890/iejg.545141
Chicago Tükel, Gözde Özkan, and Ahmet Yücesan. “A Curvature Energy Problem on a Timelike Surface”. International Electronic Journal of Geometry 11, no. 2 (November 2018): 120-25. https://doi.org/10.36890/iejg.545141.
EndNote Tükel GÖ, Yücesan A (November 1, 2018) A Curvature Energy Problem on a Timelike Surface. International Electronic Journal of Geometry 11 2 120–125.
IEEE G. Ö. Tükel and A. Yücesan, “A Curvature Energy Problem on a Timelike Surface”, Int. Electron. J. Geom., vol. 11, no. 2, pp. 120–125, 2018, doi: 10.36890/iejg.545141.
ISNAD Tükel, Gözde Özkan - Yücesan, Ahmet. “A Curvature Energy Problem on a Timelike Surface”. International Electronic Journal of Geometry 11/2 (November 2018), 120-125. https://doi.org/10.36890/iejg.545141.
JAMA Tükel GÖ, Yücesan A. A Curvature Energy Problem on a Timelike Surface. Int. Electron. J. Geom. 2018;11:120–125.
MLA Tükel, Gözde Özkan and Ahmet Yücesan. “A Curvature Energy Problem on a Timelike Surface”. International Electronic Journal of Geometry, vol. 11, no. 2, 2018, pp. 120-5, doi:10.36890/iejg.545141.
Vancouver Tükel GÖ, Yücesan A. A Curvature Energy Problem on a Timelike Surface. Int. Electron. J. Geom. 2018;11(2):120-5.