Research Article
BibTex RIS Cite

Classification of Lagrangian H-umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane

Year 2017, Volume: 10 Issue: 1, 48 - 57, 30.04.2017

Abstract


References

  • [1] Anciaux, H., Minimal Submanifolds in Pseudo-Riemannian Geometry.World Scientific Publications, New Jersey, 2010.
  • [2] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in complex Euclidean spaces. Tohoku Math. J., 49 (1997), 277-297.
  • [3] Chen, B.-Y., Lagrangian Surfaces of Constant Curvature in Complex Euclidean Plane. Tohoku Math. J., 56 (2004), 289-298.
  • [4] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in indefinite complex Euclidean spaces. Bulletin Math. Inst. Academia Sinica , 31 (2003), 151-179.
  • [5] Chen, B.-Y., Pseudo-Riemannian Geometry, -invariants and Applications. World Scientific Publications, Hackensack, New Jersey, 2011.
  • [6] Chen, B.-Y., A Construction Method of Lagrangian Surfaces in Complex Pseudo Euclidean Plane C^2_1 and its Applications. Int. Electron. J.Geom., 7 (2014), 4-25.
  • [7] Chen, B.-Y. and Fastenakels, J., Classification of Flat Lagrangianl Surfaces in Complex Lorentzian Plane. Acta Mathematica Sinica, 23 (2007), No.12 , 2111-2144.
  • [8] Chen, B.-Y. and Ogiue, K., Two theorems on Kaehler manifolds. Michigan Math. J., 21 (1974), 225-229.
  • [9] Deng, S., Lagrangian H-umbilical Surfaces in Complex Lorentzian Plane. Int. Electron. J. Geom., 9 (2016), No. 2 , 87-93.
  • [10] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York, 1983.
  • [11] Yano, K. and Kon, M., Structures on manifolds. Series in Pure Mathematics, 3.World Scientific Publishing Co., Singapore, 1984. Af
Year 2017, Volume: 10 Issue: 1, 48 - 57, 30.04.2017

Abstract

References

  • [1] Anciaux, H., Minimal Submanifolds in Pseudo-Riemannian Geometry.World Scientific Publications, New Jersey, 2010.
  • [2] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in complex Euclidean spaces. Tohoku Math. J., 49 (1997), 277-297.
  • [3] Chen, B.-Y., Lagrangian Surfaces of Constant Curvature in Complex Euclidean Plane. Tohoku Math. J., 56 (2004), 289-298.
  • [4] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in indefinite complex Euclidean spaces. Bulletin Math. Inst. Academia Sinica , 31 (2003), 151-179.
  • [5] Chen, B.-Y., Pseudo-Riemannian Geometry, -invariants and Applications. World Scientific Publications, Hackensack, New Jersey, 2011.
  • [6] Chen, B.-Y., A Construction Method of Lagrangian Surfaces in Complex Pseudo Euclidean Plane C^2_1 and its Applications. Int. Electron. J.Geom., 7 (2014), 4-25.
  • [7] Chen, B.-Y. and Fastenakels, J., Classification of Flat Lagrangianl Surfaces in Complex Lorentzian Plane. Acta Mathematica Sinica, 23 (2007), No.12 , 2111-2144.
  • [8] Chen, B.-Y. and Ogiue, K., Two theorems on Kaehler manifolds. Michigan Math. J., 21 (1974), 225-229.
  • [9] Deng, S., Lagrangian H-umbilical Surfaces in Complex Lorentzian Plane. Int. Electron. J. Geom., 9 (2016), No. 2 , 87-93.
  • [10] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York, 1983.
  • [11] Yano, K. and Kon, M., Structures on manifolds. Series in Pure Mathematics, 3.World Scientific Publishing Co., Singapore, 1984. Af
There are 11 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Shangrong Deng

Publication Date April 30, 2017
Published in Issue Year 2017 Volume: 10 Issue: 1

Cite

APA Deng, S. (2017). Classification of Lagrangian H-umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane. International Electronic Journal of Geometry, 10(1), 48-57.
AMA Deng S. Classification of Lagrangian H-umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane. Int. Electron. J. Geom. April 2017;10(1):48-57.
Chicago Deng, Shangrong. “Classification of Lagrangian H-Umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane”. International Electronic Journal of Geometry 10, no. 1 (April 2017): 48-57.
EndNote Deng S (April 1, 2017) Classification of Lagrangian H-umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane. International Electronic Journal of Geometry 10 1 48–57.
IEEE S. Deng, “Classification of Lagrangian H-umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane”, Int. Electron. J. Geom., vol. 10, no. 1, pp. 48–57, 2017.
ISNAD Deng, Shangrong. “Classification of Lagrangian H-Umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane”. International Electronic Journal of Geometry 10/1 (April 2017), 48-57.
JAMA Deng S. Classification of Lagrangian H-umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane. Int. Electron. J. Geom. 2017;10:48–57.
MLA Deng, Shangrong. “Classification of Lagrangian H-Umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane”. International Electronic Journal of Geometry, vol. 10, no. 1, 2017, pp. 48-57.
Vancouver Deng S. Classification of Lagrangian H-umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane. Int. Electron. J. Geom. 2017;10(1):48-57.