Research Article
BibTex RIS Cite

On Ruled Surfaces with Pseudo Null Base Curve in Minkowski 3-Space

Year 2016, Volume: 9 Issue: 2, 9 - 20, 30.10.2016
https://doi.org/10.36890/iejg.584573

Abstract


References

  • [1] Abdel-All, N. H., Abdel-Baky, R. A., Hamdoon, F. M. Ruled surfaces with timelike rulings, Applied Mathematics and Computation, 147(2004),no. 1, 241-253.
  • [2] Barros, M., Ferrández, A., How big is the family of stationary null scrolls?, Journal of Geometry and Physics, 64(2013), 54–60.
  • [3] Chino, S., Izumiya, S., Lightlike developables in Minkowski 3-space, Demonstratio Mathematica , 43(2010), no. 2, 387–399.
  • [4] Dillen, F., Kuhnel, W., Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Mathematica, 98(1999), no. 3, 307–320.
  • [5] Erdoğdu, M., Özdemir, M., Geometry of Hasimoto Surfaces in Minkowski 3-Space, Mathematical Physics, Analysis and Geometry, 17(2014), no. 1, 169–181.
  • [6] Ferrández, A., Lucas, P., On the Gauss map of B-scrolls in 3-dimensional Lorentzian space forms, Czechoslovak Mathematical Journal,50(125) (2000), no. 4, 699–704.
  • [7] Foertsch, T., Hasse, W., Perlick, V., Inertial forces and photon surfaces in arbitrary spacetimes, Classical Quantum Gravity, 20(2003), no. 21, 4635–4651.
  • [8] Liu, H., Ruled surfaces with lightlike ruling in Minkowski 3-space. Journal of Geometry and Physics, 59(2009), no. 1, 74–78.
  • [9] Liu, H., Characterizations of ruled surfaces with lightlike ruling in Minkowski 3-space, Results in Mathematics, 56(2009), no. 1-4, 357–368.
  • [10] O’Neill, B., Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983.
  • [11] Peternell, M., Pottmann, H., Ravani, B., On the computational geometry of ruled surfaces, Computer-Aided Design, 31(1999), 17–32.
  • [12] Pottmann, H., Wallner, J., Approximation algorithms for developable surfaces, Comput Aided Geom Design, 16(1999), 539–556.
  • [13] Struik, D. J., Lectures on Classical Differential Geometry, Dover Publications, New York, 1988.
  • [14] Turgut, A., Hacısalihoğlu, H. H., Timelike ruled surfaces in the Minkowski 3-space. II, Turkish Journal of Mathematics, 22(1998), no. 1, 33–46.
  • [15] Walrave, J., Curves and surfaces in Minkowski space, Ph.D. thesis, Katholieke Universiteit Leuven, Belgium 1995.
  • [16] Wang, D. L., Liu, J., Xiao, D. Z., Kinematic differential geometry of a rigid body in spatial motion-II. A new adjoint approach and instantaneous properties of a line trajectory in spatial kinematics, Mechanism and Machine Theory, 32(1997), no. 4, 433-444.
  • [17] Yayli, Y., Saracoglu, S., On developable ruled surfaces in Minkowski space, Advances in Applied Clifford Algebras, 22(2012), no. 2, 499–510.
Year 2016, Volume: 9 Issue: 2, 9 - 20, 30.10.2016
https://doi.org/10.36890/iejg.584573

Abstract

References

  • [1] Abdel-All, N. H., Abdel-Baky, R. A., Hamdoon, F. M. Ruled surfaces with timelike rulings, Applied Mathematics and Computation, 147(2004),no. 1, 241-253.
  • [2] Barros, M., Ferrández, A., How big is the family of stationary null scrolls?, Journal of Geometry and Physics, 64(2013), 54–60.
  • [3] Chino, S., Izumiya, S., Lightlike developables in Minkowski 3-space, Demonstratio Mathematica , 43(2010), no. 2, 387–399.
  • [4] Dillen, F., Kuhnel, W., Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Mathematica, 98(1999), no. 3, 307–320.
  • [5] Erdoğdu, M., Özdemir, M., Geometry of Hasimoto Surfaces in Minkowski 3-Space, Mathematical Physics, Analysis and Geometry, 17(2014), no. 1, 169–181.
  • [6] Ferrández, A., Lucas, P., On the Gauss map of B-scrolls in 3-dimensional Lorentzian space forms, Czechoslovak Mathematical Journal,50(125) (2000), no. 4, 699–704.
  • [7] Foertsch, T., Hasse, W., Perlick, V., Inertial forces and photon surfaces in arbitrary spacetimes, Classical Quantum Gravity, 20(2003), no. 21, 4635–4651.
  • [8] Liu, H., Ruled surfaces with lightlike ruling in Minkowski 3-space. Journal of Geometry and Physics, 59(2009), no. 1, 74–78.
  • [9] Liu, H., Characterizations of ruled surfaces with lightlike ruling in Minkowski 3-space, Results in Mathematics, 56(2009), no. 1-4, 357–368.
  • [10] O’Neill, B., Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983.
  • [11] Peternell, M., Pottmann, H., Ravani, B., On the computational geometry of ruled surfaces, Computer-Aided Design, 31(1999), 17–32.
  • [12] Pottmann, H., Wallner, J., Approximation algorithms for developable surfaces, Comput Aided Geom Design, 16(1999), 539–556.
  • [13] Struik, D. J., Lectures on Classical Differential Geometry, Dover Publications, New York, 1988.
  • [14] Turgut, A., Hacısalihoğlu, H. H., Timelike ruled surfaces in the Minkowski 3-space. II, Turkish Journal of Mathematics, 22(1998), no. 1, 33–46.
  • [15] Walrave, J., Curves and surfaces in Minkowski space, Ph.D. thesis, Katholieke Universiteit Leuven, Belgium 1995.
  • [16] Wang, D. L., Liu, J., Xiao, D. Z., Kinematic differential geometry of a rigid body in spatial motion-II. A new adjoint approach and instantaneous properties of a line trajectory in spatial kinematics, Mechanism and Machine Theory, 32(1997), no. 4, 433-444.
  • [17] Yayli, Y., Saracoglu, S., On developable ruled surfaces in Minkowski space, Advances in Applied Clifford Algebras, 22(2012), no. 2, 499–510.
There are 17 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Emilija Nešović

Ufuk Öztürk This is me

Esra B. Koç Öztürk This is me

Kazım İlarslan

Publication Date October 30, 2016
Published in Issue Year 2016 Volume: 9 Issue: 2

Cite

APA Nešović, E., Öztürk, U., Koç Öztürk, E. B., İlarslan, K. (2016). On Ruled Surfaces with Pseudo Null Base Curve in Minkowski 3-Space. International Electronic Journal of Geometry, 9(2), 9-20. https://doi.org/10.36890/iejg.584573
AMA Nešović E, Öztürk U, Koç Öztürk EB, İlarslan K. On Ruled Surfaces with Pseudo Null Base Curve in Minkowski 3-Space. Int. Electron. J. Geom. October 2016;9(2):9-20. doi:10.36890/iejg.584573
Chicago Nešović, Emilija, Ufuk Öztürk, Esra B. Koç Öztürk, and Kazım İlarslan. “On Ruled Surfaces With Pseudo Null Base Curve in Minkowski 3-Space”. International Electronic Journal of Geometry 9, no. 2 (October 2016): 9-20. https://doi.org/10.36890/iejg.584573.
EndNote Nešović E, Öztürk U, Koç Öztürk EB, İlarslan K (October 1, 2016) On Ruled Surfaces with Pseudo Null Base Curve in Minkowski 3-Space. International Electronic Journal of Geometry 9 2 9–20.
IEEE E. Nešović, U. Öztürk, E. B. Koç Öztürk, and K. İlarslan, “On Ruled Surfaces with Pseudo Null Base Curve in Minkowski 3-Space”, Int. Electron. J. Geom., vol. 9, no. 2, pp. 9–20, 2016, doi: 10.36890/iejg.584573.
ISNAD Nešović, Emilija et al. “On Ruled Surfaces With Pseudo Null Base Curve in Minkowski 3-Space”. International Electronic Journal of Geometry 9/2 (October 2016), 9-20. https://doi.org/10.36890/iejg.584573.
JAMA Nešović E, Öztürk U, Koç Öztürk EB, İlarslan K. On Ruled Surfaces with Pseudo Null Base Curve in Minkowski 3-Space. Int. Electron. J. Geom. 2016;9:9–20.
MLA Nešović, Emilija et al. “On Ruled Surfaces With Pseudo Null Base Curve in Minkowski 3-Space”. International Electronic Journal of Geometry, vol. 9, no. 2, 2016, pp. 9-20, doi:10.36890/iejg.584573.
Vancouver Nešović E, Öztürk U, Koç Öztürk EB, İlarslan K. On Ruled Surfaces with Pseudo Null Base Curve in Minkowski 3-Space. Int. Electron. J. Geom. 2016;9(2):9-20.