[1] Aydoğmus¸, Ö., Kula, L. and Yaylı, Y., On point-line displacement in Minkowski 3-space.
Differential Geometry-Dynamical Systems, 10(2008), 32-43.
[2] Bottema, O., and Roth, B., Theoretical Kinematics, Dover Publications, New York, 1990.
[3] Hunt, K. H., Kinematic Geometry of Mechanisms, Clarendon Press, Oxford, England, 465 p., 1978.
[4] Kirson, Y., Higher order curvature theory in space kinematics. Ph.D dissertation, University
of California at Berkeley, 140 p., 1975.
[5] Kim, J. H., Ruyh, B. S., and Pennock, G. R., Development of a Trajectory Generation Method for
a Five-Axis NC Machine. Mech. Mach.Theory, 36 (2001), 983-996.
[6] McCarthy, J. M., and Roth, B., The Curvature Theory of Line Trajectories in Spatial
Kinematics. ASME J. Mech. Des., 103 (1981), 718-724.
[7] McCarthy, J. M., The Instantaneous Kinematics of Line Trajectories in Terms of a Kinematic Mapping of Spatial Rigid Motion. ASME J.
Mech., Transm., Autom. Des., 109 (1987), 98-100.
[8] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London,
1983.
[9] Ryuh, B. S., Robot trajectory planning using the curvature theory of ruled surfaces. Doctoral
dissertation, Purdue University, West Lafayette, Ind, USA, 1989.
[10] Ryuh, B. S., and Pennock, G. R., Accurate Motion of a Robot End-Effector Using the Curvature
Theory of Ruled Surface. ASME J. Mech.Transm. Autom. Des., 110 (1988), 383-388.
[11] Roth, B., Finding Geometric Invariants From Time-Based Invariants for Spherical and Spatial
Motions. ASME Journal of Mechanical Design, 127 (2005), 227-231.
[12] Stachel, H., Instantaneous Spatial Kinematics and the Invariants of the Axodes, Proceedings
Ball 2000 Symposium, Cambridge University Press, London, 23 (2000).
[13] Ting, K. L., Zhang, Y., and Bunduwongse, R., Characterization and Coordination of Point-line
Trajectories. ASME Journal of Mechanical Design, 127 (2005), 502-505.
[14] Yücesan, A., Özkan, G., Generalized relaxed elastic line on a non-degenerate surface.
International Conference: Mathematical Science andApplications, 26-30 December 2012, Abu Dhabi, UAE.
Year 2016,
Volume: 9 Issue: 2, 44 - 49, 30.10.2016
[1] Aydoğmus¸, Ö., Kula, L. and Yaylı, Y., On point-line displacement in Minkowski 3-space.
Differential Geometry-Dynamical Systems, 10(2008), 32-43.
[2] Bottema, O., and Roth, B., Theoretical Kinematics, Dover Publications, New York, 1990.
[3] Hunt, K. H., Kinematic Geometry of Mechanisms, Clarendon Press, Oxford, England, 465 p., 1978.
[4] Kirson, Y., Higher order curvature theory in space kinematics. Ph.D dissertation, University
of California at Berkeley, 140 p., 1975.
[5] Kim, J. H., Ruyh, B. S., and Pennock, G. R., Development of a Trajectory Generation Method for
a Five-Axis NC Machine. Mech. Mach.Theory, 36 (2001), 983-996.
[6] McCarthy, J. M., and Roth, B., The Curvature Theory of Line Trajectories in Spatial
Kinematics. ASME J. Mech. Des., 103 (1981), 718-724.
[7] McCarthy, J. M., The Instantaneous Kinematics of Line Trajectories in Terms of a Kinematic Mapping of Spatial Rigid Motion. ASME J.
Mech., Transm., Autom. Des., 109 (1987), 98-100.
[8] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London,
1983.
[9] Ryuh, B. S., Robot trajectory planning using the curvature theory of ruled surfaces. Doctoral
dissertation, Purdue University, West Lafayette, Ind, USA, 1989.
[10] Ryuh, B. S., and Pennock, G. R., Accurate Motion of a Robot End-Effector Using the Curvature
Theory of Ruled Surface. ASME J. Mech.Transm. Autom. Des., 110 (1988), 383-388.
[11] Roth, B., Finding Geometric Invariants From Time-Based Invariants for Spherical and Spatial
Motions. ASME Journal of Mechanical Design, 127 (2005), 227-231.
[12] Stachel, H., Instantaneous Spatial Kinematics and the Invariants of the Axodes, Proceedings
Ball 2000 Symposium, Cambridge University Press, London, 23 (2000).
[13] Ting, K. L., Zhang, Y., and Bunduwongse, R., Characterization and Coordination of Point-line
Trajectories. ASME Journal of Mechanical Design, 127 (2005), 502-505.
[14] Yücesan, A., Özkan, G., Generalized relaxed elastic line on a non-degenerate surface.
International Conference: Mathematical Science andApplications, 26-30 December 2012, Abu Dhabi, UAE.
Turhan, T., Özdemir, V., & Ayyıldız, N. (2016). Some Results on Point-Line Trajectories in Lorentz 3-space. International Electronic Journal of Geometry, 9(2), 44-49. https://doi.org/10.36890/iejg.584581
AMA
Turhan T, Özdemir V, Ayyıldız N. Some Results on Point-Line Trajectories in Lorentz 3-space. Int. Electron. J. Geom. October 2016;9(2):44-49. doi:10.36890/iejg.584581
Chicago
Turhan, Tunahan, Vildan Özdemir, and Nihat Ayyıldız. “Some Results on Point-Line Trajectories in Lorentz 3-Space”. International Electronic Journal of Geometry 9, no. 2 (October 2016): 44-49. https://doi.org/10.36890/iejg.584581.
EndNote
Turhan T, Özdemir V, Ayyıldız N (October 1, 2016) Some Results on Point-Line Trajectories in Lorentz 3-space. International Electronic Journal of Geometry 9 2 44–49.
IEEE
T. Turhan, V. Özdemir, and N. Ayyıldız, “Some Results on Point-Line Trajectories in Lorentz 3-space”, Int. Electron. J. Geom., vol. 9, no. 2, pp. 44–49, 2016, doi: 10.36890/iejg.584581.
ISNAD
Turhan, Tunahan et al. “Some Results on Point-Line Trajectories in Lorentz 3-Space”. International Electronic Journal of Geometry 9/2 (October 2016), 44-49. https://doi.org/10.36890/iejg.584581.
JAMA
Turhan T, Özdemir V, Ayyıldız N. Some Results on Point-Line Trajectories in Lorentz 3-space. Int. Electron. J. Geom. 2016;9:44–49.
MLA
Turhan, Tunahan et al. “Some Results on Point-Line Trajectories in Lorentz 3-Space”. International Electronic Journal of Geometry, vol. 9, no. 2, 2016, pp. 44-49, doi:10.36890/iejg.584581.
Vancouver
Turhan T, Özdemir V, Ayyıldız N. Some Results on Point-Line Trajectories in Lorentz 3-space. Int. Electron. J. Geom. 2016;9(2):44-9.