Research Article
BibTex RIS Cite

Lagrangian H-Umbilical Surfaces in Complex Lorentzian Plane

Year 2016, Volume: 9 Issue: 2, 87 - 93, 30.10.2016
https://doi.org/10.36890/iejg.584604

Abstract


References

  • [1] Anciaux, H., Minimal Submanifolds in Pseudo-Riemannian Geometry. World Scientific Publications, New Jersey, 2010.
  • [2] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in complex Euclidean spaces. Tohoku Math. J. 49 (1997), 277-297.
  • [3] Chen, B.-Y., Lagrangian Surfaces of Constant Curvature in Complex Euclidean Plane. Tohoku Math. J. 56 (2004), 289-298.
  • [4] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in indefinite complex Euclidean spaces. Bulletin Math. Inst. Academia Sinica31 (2003), 151-179.
  • [5] Chen, B.-Y., Pseudo-Riemannian Geometry, δ-invariants and Applications. World Scientific Publications, Hackensack, New Jersey, 2011.
  • [6] Chen, B.-Y., A Construction Method of Lagrangian Surfaces in Complex Pseudo Euclidean Plane C2 and its Applications. Int. Electron. J. Geom. 7 (2014), 4-25.
  • [7] Chen, B.-Y. and Ogiue, K., Two theorems on Kaehler manifolds. Michigan Math. J. 21 (1974), 225-229.
  • [8] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York, 1983.
  • [9] K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, 3. World Scientific Publishing Co., Singapore, 1984.
Year 2016, Volume: 9 Issue: 2, 87 - 93, 30.10.2016
https://doi.org/10.36890/iejg.584604

Abstract

References

  • [1] Anciaux, H., Minimal Submanifolds in Pseudo-Riemannian Geometry. World Scientific Publications, New Jersey, 2010.
  • [2] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in complex Euclidean spaces. Tohoku Math. J. 49 (1997), 277-297.
  • [3] Chen, B.-Y., Lagrangian Surfaces of Constant Curvature in Complex Euclidean Plane. Tohoku Math. J. 56 (2004), 289-298.
  • [4] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in indefinite complex Euclidean spaces. Bulletin Math. Inst. Academia Sinica31 (2003), 151-179.
  • [5] Chen, B.-Y., Pseudo-Riemannian Geometry, δ-invariants and Applications. World Scientific Publications, Hackensack, New Jersey, 2011.
  • [6] Chen, B.-Y., A Construction Method of Lagrangian Surfaces in Complex Pseudo Euclidean Plane C2 and its Applications. Int. Electron. J. Geom. 7 (2014), 4-25.
  • [7] Chen, B.-Y. and Ogiue, K., Two theorems on Kaehler manifolds. Michigan Math. J. 21 (1974), 225-229.
  • [8] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York, 1983.
  • [9] K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, 3. World Scientific Publishing Co., Singapore, 1984.
There are 9 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Shangrong Deng

Publication Date October 30, 2016
Published in Issue Year 2016 Volume: 9 Issue: 2

Cite

APA Deng, S. (2016). Lagrangian H-Umbilical Surfaces in Complex Lorentzian Plane. International Electronic Journal of Geometry, 9(2), 87-93. https://doi.org/10.36890/iejg.584604
AMA Deng S. Lagrangian H-Umbilical Surfaces in Complex Lorentzian Plane. Int. Electron. J. Geom. October 2016;9(2):87-93. doi:10.36890/iejg.584604
Chicago Deng, Shangrong. “Lagrangian H-Umbilical Surfaces in Complex Lorentzian Plane”. International Electronic Journal of Geometry 9, no. 2 (October 2016): 87-93. https://doi.org/10.36890/iejg.584604.
EndNote Deng S (October 1, 2016) Lagrangian H-Umbilical Surfaces in Complex Lorentzian Plane. International Electronic Journal of Geometry 9 2 87–93.
IEEE S. Deng, “Lagrangian H-Umbilical Surfaces in Complex Lorentzian Plane”, Int. Electron. J. Geom., vol. 9, no. 2, pp. 87–93, 2016, doi: 10.36890/iejg.584604.
ISNAD Deng, Shangrong. “Lagrangian H-Umbilical Surfaces in Complex Lorentzian Plane”. International Electronic Journal of Geometry 9/2 (October 2016), 87-93. https://doi.org/10.36890/iejg.584604.
JAMA Deng S. Lagrangian H-Umbilical Surfaces in Complex Lorentzian Plane. Int. Electron. J. Geom. 2016;9:87–93.
MLA Deng, Shangrong. “Lagrangian H-Umbilical Surfaces in Complex Lorentzian Plane”. International Electronic Journal of Geometry, vol. 9, no. 2, 2016, pp. 87-93, doi:10.36890/iejg.584604.
Vancouver Deng S. Lagrangian H-Umbilical Surfaces in Complex Lorentzian Plane. Int. Electron. J. Geom. 2016;9(2):87-93.