Research Article
BibTex RIS Cite
Year 2016, Volume: 9 Issue: 1, 78 - 84, 30.04.2016
https://doi.org/10.36890/iejg.591895

Abstract

References

  • [1] Bejancu, A. and Farran, H. R. Geometry of Pseudo-Finsler Submanifolds, Kluwer Academic Publishers, 2000.
  • [2] Bejancu, A. and Farran, H. R. A comparison between the induced and the intrinsic Finsler connections on a Finsler submanifold, Algebras, Groups and Geometrie. 16(1999), no. 1, 11-23.
  • [3] Esrafilian, E. and Salimi Moghaddam, H. R. The Relation Between the Associate Almost Complex Structure to HM′ and(HM′, S, T )−Cartan Connections, SIGMA. 2(2006), 067, 7 pages.
  • [4] Gibbons, G. W. Papadopoulos, G. and Stelle, K. S. HKT and OKT geometries on soliton black hole moduli spaces, Nucl. Phys. B. 508(1997), 623-658.
  • [5] Poon, Y. S. Examples of Hyper-Ka¨hler Connections with Torsion, Vienna, Preprint ESI, 770(1999), 1-7.
  • [6] Salimi Moghaddam, H. R. Randers Metrics of Berwald type on 4-dimensional hypercomplex Lie groups, J. Phys. A: Math. Theor. 42(2009), 095212(7pp).
  • [7] Salimi Moghaddam, H. R. On the Geometry of Some Para-Hypercomplex Lie Groups, Archivum Mathematicom BRNO. 45(2009), 159-170.

Two New Families of Finsler Connections on Even-Dimensional Manifolds

Year 2016, Volume: 9 Issue: 1, 78 - 84, 30.04.2016
https://doi.org/10.36890/iejg.591895

Abstract

References

  • [1] Bejancu, A. and Farran, H. R. Geometry of Pseudo-Finsler Submanifolds, Kluwer Academic Publishers, 2000.
  • [2] Bejancu, A. and Farran, H. R. A comparison between the induced and the intrinsic Finsler connections on a Finsler submanifold, Algebras, Groups and Geometrie. 16(1999), no. 1, 11-23.
  • [3] Esrafilian, E. and Salimi Moghaddam, H. R. The Relation Between the Associate Almost Complex Structure to HM′ and(HM′, S, T )−Cartan Connections, SIGMA. 2(2006), 067, 7 pages.
  • [4] Gibbons, G. W. Papadopoulos, G. and Stelle, K. S. HKT and OKT geometries on soliton black hole moduli spaces, Nucl. Phys. B. 508(1997), 623-658.
  • [5] Poon, Y. S. Examples of Hyper-Ka¨hler Connections with Torsion, Vienna, Preprint ESI, 770(1999), 1-7.
  • [6] Salimi Moghaddam, H. R. Randers Metrics of Berwald type on 4-dimensional hypercomplex Lie groups, J. Phys. A: Math. Theor. 42(2009), 095212(7pp).
  • [7] Salimi Moghaddam, H. R. On the Geometry of Some Para-Hypercomplex Lie Groups, Archivum Mathematicom BRNO. 45(2009), 159-170.
There are 7 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

H. R. Salimi Moghaddam

Publication Date April 30, 2016
Published in Issue Year 2016 Volume: 9 Issue: 1

Cite

APA Moghaddam, H. R. S. (2016). Two New Families of Finsler Connections on Even-Dimensional Manifolds. International Electronic Journal of Geometry, 9(1), 78-84. https://doi.org/10.36890/iejg.591895
AMA Moghaddam HRS. Two New Families of Finsler Connections on Even-Dimensional Manifolds. Int. Electron. J. Geom. April 2016;9(1):78-84. doi:10.36890/iejg.591895
Chicago Moghaddam, H. R. Salimi. “Two New Families of Finsler Connections on Even-Dimensional Manifolds”. International Electronic Journal of Geometry 9, no. 1 (April 2016): 78-84. https://doi.org/10.36890/iejg.591895.
EndNote Moghaddam HRS (April 1, 2016) Two New Families of Finsler Connections on Even-Dimensional Manifolds. International Electronic Journal of Geometry 9 1 78–84.
IEEE H. R. S. Moghaddam, “Two New Families of Finsler Connections on Even-Dimensional Manifolds”, Int. Electron. J. Geom., vol. 9, no. 1, pp. 78–84, 2016, doi: 10.36890/iejg.591895.
ISNAD Moghaddam, H. R. Salimi. “Two New Families of Finsler Connections on Even-Dimensional Manifolds”. International Electronic Journal of Geometry 9/1 (April 2016), 78-84. https://doi.org/10.36890/iejg.591895.
JAMA Moghaddam HRS. Two New Families of Finsler Connections on Even-Dimensional Manifolds. Int. Electron. J. Geom. 2016;9:78–84.
MLA Moghaddam, H. R. Salimi. “Two New Families of Finsler Connections on Even-Dimensional Manifolds”. International Electronic Journal of Geometry, vol. 9, no. 1, 2016, pp. 78-84, doi:10.36890/iejg.591895.
Vancouver Moghaddam HRS. Two New Families of Finsler Connections on Even-Dimensional Manifolds. Int. Electron. J. Geom. 2016;9(1):78-84.