[1] Al-Solamy, F.R., Khan M.A. and Uddin, S., Totally umbilical hemi-slant submanifolds of
Kähler manifolds, Abstr. Appl. Anal. 2011, Art. ID 987157, 9 pp.
[2] Carriazo, A., Bi-slant immersions, in:Proc. ICRAMS 2000, Kharagpur,India, 2000, 88–97. [3]
Chen, B.-Y., Differential geometry of real submanifolds in a Kähler manifold, Monatsh Math.
91(1981), 257–274.
[5] Dragomir, S. and Ornea, L., Locally conformal Kähler geometry, Progress in Mathematicsi
155.Birkhäuser Boston, Inc., Boston, MA, 1998.
[6] Papaghiuc, N., Semi-slant submanifolds of a Kählerian manifold, Ann. S¸t. Al. I. Cuza Univ.
Ia¸si 40(1994), 55–61.
[7] Li, H. and Liu, X., Semi-slant submanifolds of a locally product manifold, Georgian Math.
J. 12(2005), no. 2, 273–282.
[8] Ronsse, G.S., Generic and skew CR-submanifolds of a Kähler manifold, Bull. Inst. Math.
Acad. Sinica 18(1990), 127–141.
[9] Şahin, B., Warped product submanifolds of a Kähler manifold with a slant factor, Ann. Pol.
Math. 95(2009), no. 3, 207–226.
[10] Shahid, M.H. and Husain, S.I., Generic submanifolds of a locally conformal Kaehler manifold,
Soochow J. of Math. 14(1988), no. 1, 111–117.
[11] Tripathi, M.M., On CR submanifolds of nearly and closely cosympletic manifolds, Ganita,
51(2000), no. 1, 45–56.
[12] Taştan, H.M. and Tripathi, M.M., Semi-slant submanifolds of a locally conformal
K¨ahler manifold, Ann. S¸t. Al. I. Cuza Univ. Ia¸si, 2014 (accepted).
[13] Uddin, S., Khan M.A. and Singh, K., A note on totally umbilical pseudo-slant submanifolds of
a nearly Kähler manifold, Acta Univ. Apulensis Math. Inform. No. 29(2012), 279-285.
[14] Vaisman, I., Some curvature properties of locally conformal Kähler manifolds, Trans. Amer.
Math. Soc. 259(1980), no. 2, 439–447.
[15] Yano, K. and Kon, M., Structures on Manifolds, World Scientific, Singapore, 1984.
Year 2015,
Volume: 8 Issue: 2, 46 - 56, 30.10.2015
[1] Al-Solamy, F.R., Khan M.A. and Uddin, S., Totally umbilical hemi-slant submanifolds of
Kähler manifolds, Abstr. Appl. Anal. 2011, Art. ID 987157, 9 pp.
[2] Carriazo, A., Bi-slant immersions, in:Proc. ICRAMS 2000, Kharagpur,India, 2000, 88–97. [3]
Chen, B.-Y., Differential geometry of real submanifolds in a Kähler manifold, Monatsh Math.
91(1981), 257–274.
[5] Dragomir, S. and Ornea, L., Locally conformal Kähler geometry, Progress in Mathematicsi
155.Birkhäuser Boston, Inc., Boston, MA, 1998.
[6] Papaghiuc, N., Semi-slant submanifolds of a Kählerian manifold, Ann. S¸t. Al. I. Cuza Univ.
Ia¸si 40(1994), 55–61.
[7] Li, H. and Liu, X., Semi-slant submanifolds of a locally product manifold, Georgian Math.
J. 12(2005), no. 2, 273–282.
[8] Ronsse, G.S., Generic and skew CR-submanifolds of a Kähler manifold, Bull. Inst. Math.
Acad. Sinica 18(1990), 127–141.
[9] Şahin, B., Warped product submanifolds of a Kähler manifold with a slant factor, Ann. Pol.
Math. 95(2009), no. 3, 207–226.
[10] Shahid, M.H. and Husain, S.I., Generic submanifolds of a locally conformal Kaehler manifold,
Soochow J. of Math. 14(1988), no. 1, 111–117.
[11] Tripathi, M.M., On CR submanifolds of nearly and closely cosympletic manifolds, Ganita,
51(2000), no. 1, 45–56.
[12] Taştan, H.M. and Tripathi, M.M., Semi-slant submanifolds of a locally conformal
K¨ahler manifold, Ann. S¸t. Al. I. Cuza Univ. Ia¸si, 2014 (accepted).
[13] Uddin, S., Khan M.A. and Singh, K., A note on totally umbilical pseudo-slant submanifolds of
a nearly Kähler manifold, Acta Univ. Apulensis Math. Inform. No. 29(2012), 279-285.
[14] Vaisman, I., Some curvature properties of locally conformal Kähler manifolds, Trans. Amer.
Math. Soc. 259(1980), no. 2, 439–447.
[15] Yano, K. and Kon, M., Structures on Manifolds, World Scientific, Singapore, 1984.
Taştan, H. M., & Gerdan, S. (2015). HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD. International Electronic Journal of Geometry, 8(2), 46-56. https://doi.org/10.36890/iejg.592280
AMA
Taştan HM, Gerdan S. HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD. Int. Electron. J. Geom. October 2015;8(2):46-56. doi:10.36890/iejg.592280
Chicago
Taştan, Hakan M., and Sibel Gerdan. “HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD”. International Electronic Journal of Geometry 8, no. 2 (October 2015): 46-56. https://doi.org/10.36890/iejg.592280.
EndNote
Taştan HM, Gerdan S (October 1, 2015) HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD. International Electronic Journal of Geometry 8 2 46–56.
IEEE
H. M. Taştan and S. Gerdan, “HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD”, Int. Electron. J. Geom., vol. 8, no. 2, pp. 46–56, 2015, doi: 10.36890/iejg.592280.
ISNAD
Taştan, Hakan M. - Gerdan, Sibel. “HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD”. International Electronic Journal of Geometry 8/2 (October 2015), 46-56. https://doi.org/10.36890/iejg.592280.
JAMA
Taştan HM, Gerdan S. HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD. Int. Electron. J. Geom. 2015;8:46–56.
MLA
Taştan, Hakan M. and Sibel Gerdan. “HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD”. International Electronic Journal of Geometry, vol. 8, no. 2, 2015, pp. 46-56, doi:10.36890/iejg.592280.
Vancouver
Taştan HM, Gerdan S. HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD. Int. Electron. J. Geom. 2015;8(2):46-5.