Research Article
BibTex RIS Cite

HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD

Year 2015, Volume: 8 Issue: 2, 46 - 56, 30.10.2015
https://doi.org/10.36890/iejg.592280

Abstract

 

References

  • [1] Al-Solamy, F.R., Khan M.A. and Uddin, S., Totally umbilical hemi-slant submanifolds of Kähler manifolds, Abstr. Appl. Anal. 2011, Art. ID 987157, 9 pp.
  • [2] Carriazo, A., Bi-slant immersions, in:Proc. ICRAMS 2000, Kharagpur,India, 2000, 88–97. [3] Chen, B.-Y., Differential geometry of real submanifolds in a Kähler manifold, Monatsh Math. 91(1981), 257–274.
  • [4] Chen, B.-Y., Geometry of slant submanifolds, Katholieke Universiteit Leuven, 1990.
  • [5] Dragomir, S. and Ornea, L., Locally conformal Kähler geometry, Progress in Mathematicsi 155.Birkhäuser Boston, Inc., Boston, MA, 1998.
  • [6] Papaghiuc, N., Semi-slant submanifolds of a Kählerian manifold, Ann. S¸t. Al. I. Cuza Univ. Ia¸si 40(1994), 55–61.
  • [7] Li, H. and Liu, X., Semi-slant submanifolds of a locally product manifold, Georgian Math. J. 12(2005), no. 2, 273–282.
  • [8] Ronsse, G.S., Generic and skew CR-submanifolds of a Kähler manifold, Bull. Inst. Math. Acad. Sinica 18(1990), 127–141.
  • [9] Şahin, B., Warped product submanifolds of a Kähler manifold with a slant factor, Ann. Pol. Math. 95(2009), no. 3, 207–226.
  • [10] Shahid, M.H. and Husain, S.I., Generic submanifolds of a locally conformal Kaehler manifold, Soochow J. of Math. 14(1988), no. 1, 111–117.
  • [11] Tripathi, M.M., On CR submanifolds of nearly and closely cosympletic manifolds, Ganita, 51(2000), no. 1, 45–56.
  • [12] Taştan, H.M. and Tripathi, M.M., Semi-slant submanifolds of a locally conformal K¨ahler manifold, Ann. S¸t. Al. I. Cuza Univ. Ia¸si, 2014 (accepted).
  • [13] Uddin, S., Khan M.A. and Singh, K., A note on totally umbilical pseudo-slant submanifolds of a nearly Kähler manifold, Acta Univ. Apulensis Math. Inform. No. 29(2012), 279-285.
  • [14] Vaisman, I., Some curvature properties of locally conformal Kähler manifolds, Trans. Amer. Math. Soc. 259(1980), no. 2, 439–447.
  • [15] Yano, K. and Kon, M., Structures on Manifolds, World Scientific, Singapore, 1984.
Year 2015, Volume: 8 Issue: 2, 46 - 56, 30.10.2015
https://doi.org/10.36890/iejg.592280

Abstract

References

  • [1] Al-Solamy, F.R., Khan M.A. and Uddin, S., Totally umbilical hemi-slant submanifolds of Kähler manifolds, Abstr. Appl. Anal. 2011, Art. ID 987157, 9 pp.
  • [2] Carriazo, A., Bi-slant immersions, in:Proc. ICRAMS 2000, Kharagpur,India, 2000, 88–97. [3] Chen, B.-Y., Differential geometry of real submanifolds in a Kähler manifold, Monatsh Math. 91(1981), 257–274.
  • [4] Chen, B.-Y., Geometry of slant submanifolds, Katholieke Universiteit Leuven, 1990.
  • [5] Dragomir, S. and Ornea, L., Locally conformal Kähler geometry, Progress in Mathematicsi 155.Birkhäuser Boston, Inc., Boston, MA, 1998.
  • [6] Papaghiuc, N., Semi-slant submanifolds of a Kählerian manifold, Ann. S¸t. Al. I. Cuza Univ. Ia¸si 40(1994), 55–61.
  • [7] Li, H. and Liu, X., Semi-slant submanifolds of a locally product manifold, Georgian Math. J. 12(2005), no. 2, 273–282.
  • [8] Ronsse, G.S., Generic and skew CR-submanifolds of a Kähler manifold, Bull. Inst. Math. Acad. Sinica 18(1990), 127–141.
  • [9] Şahin, B., Warped product submanifolds of a Kähler manifold with a slant factor, Ann. Pol. Math. 95(2009), no. 3, 207–226.
  • [10] Shahid, M.H. and Husain, S.I., Generic submanifolds of a locally conformal Kaehler manifold, Soochow J. of Math. 14(1988), no. 1, 111–117.
  • [11] Tripathi, M.M., On CR submanifolds of nearly and closely cosympletic manifolds, Ganita, 51(2000), no. 1, 45–56.
  • [12] Taştan, H.M. and Tripathi, M.M., Semi-slant submanifolds of a locally conformal K¨ahler manifold, Ann. S¸t. Al. I. Cuza Univ. Ia¸si, 2014 (accepted).
  • [13] Uddin, S., Khan M.A. and Singh, K., A note on totally umbilical pseudo-slant submanifolds of a nearly Kähler manifold, Acta Univ. Apulensis Math. Inform. No. 29(2012), 279-285.
  • [14] Vaisman, I., Some curvature properties of locally conformal Kähler manifolds, Trans. Amer. Math. Soc. 259(1980), no. 2, 439–447.
  • [15] Yano, K. and Kon, M., Structures on Manifolds, World Scientific, Singapore, 1984.
There are 14 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Hakan M. Taştan

Sibel Gerdan

Publication Date October 30, 2015
Published in Issue Year 2015 Volume: 8 Issue: 2

Cite

APA Taştan, H. M., & Gerdan, S. (2015). HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD. International Electronic Journal of Geometry, 8(2), 46-56. https://doi.org/10.36890/iejg.592280
AMA Taştan HM, Gerdan S. HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD. Int. Electron. J. Geom. October 2015;8(2):46-56. doi:10.36890/iejg.592280
Chicago Taştan, Hakan M., and Sibel Gerdan. “HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD”. International Electronic Journal of Geometry 8, no. 2 (October 2015): 46-56. https://doi.org/10.36890/iejg.592280.
EndNote Taştan HM, Gerdan S (October 1, 2015) HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD. International Electronic Journal of Geometry 8 2 46–56.
IEEE H. M. Taştan and S. Gerdan, “HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD”, Int. Electron. J. Geom., vol. 8, no. 2, pp. 46–56, 2015, doi: 10.36890/iejg.592280.
ISNAD Taştan, Hakan M. - Gerdan, Sibel. “HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD”. International Electronic Journal of Geometry 8/2 (October 2015), 46-56. https://doi.org/10.36890/iejg.592280.
JAMA Taştan HM, Gerdan S. HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD. Int. Electron. J. Geom. 2015;8:46–56.
MLA Taştan, Hakan M. and Sibel Gerdan. “HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD”. International Electronic Journal of Geometry, vol. 8, no. 2, 2015, pp. 46-56, doi:10.36890/iejg.592280.
Vancouver Taştan HM, Gerdan S. HEMI-SLANT SUBMANIFOLDS OF A LOCALLY CONFORMAL KÄHLER MANIFOLD. Int. Electron. J. Geom. 2015;8(2):46-5.