Research Article
BibTex RIS Cite
Year 2013, Volume: 6 Issue: 2, 57 - 62, 30.10.2013

Abstract

References

  • [1] Alfonso, C. and Verónica M., The curvature tensor of almost cosymplectic and almost Ken- motsu (κ, µ, ν)-spaces. arXiv:1201.5565v2.
  • [2] Blair D., Kouforgiorgos T. and Papantoniou B. J., Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91 (1995), 189-214.
  • [3] Blair D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathe- matics, 203. Birkhâuser Boston, Inc., Boston, MA, 2002.
  • [4] Blair D. E. and Goldberg S. I., Topology of almost contact manifolds, J. Differential geometry, 1(1967), 347-354.
  • [5] Blair D. E., The theory of quasi-Sasakian structures, J. Diff. Geometry, 1 (1967), 331-345.
  • [6] Blair D. E., Goldberg S. I., Topology of almost contact manifolds, J. Diff. Geometry, 1 (1967),347-354.
  • [7] Boeckx, E., A full classification of contact metric (κ, µ)-spaces, Illinois J. Math., 44 (1) (2000), 212-219.
  • [8] Chinea D., De Leon M., Marrero J. C., Topology of cosymplectic manifolds, J. Math. Pures Appl., 72 (1993), 567-591.
  • [9] Chinea D., De Leon M., Marrero J. C., Coeffective cohomology on almost cosymplectic manifolds, Bull. Sci. Math., 119 (1995), 3-20.
  • [10] Chinea D. and Gonzalez C., An example of almost cosymplectic homogeneous manifold, in: Lect. Notes Math. Vol. 1209, Springer-Verlag, Berlin-Heildelberg-New York, (1986), 133-142.
  • [11] Cordero L. A., Fernandez M. and De Leon M., Examples of compact almost contact manifolds admitting neither Sasakian nor cosymplectic structures, Atti Sem. Mat. Univ. Modena, 34 (1985-86), 43-54.
  • [12] Endo H., On Ricci curvatures of almost cosymplectic manifolds, An. S¸tiint. Univ. ”Al. I. Cuza” Ia¸si, Mat., 40 (1994), 75-83.
  • [13] Fujimoto A. and Muto H., On cosymplectic manifolds, Tensor N. S., 28 (1974), 43-52.
  • [14] Goldberg S.I. and Yano K. Integrability of almost cosymplectic structures, Pasific J. Math., 31 (1969), 373-382.
  • [15] Kim, T. W. and Pak, H. K , Canonical foliations of certain classes of almost contact metric structures, Acta Math. 21 (2005), no. 4, 841–846.
  • [16] Kirichenko V. F., Almost cosymplectic manifolds satisfying the axiom of Φ-holomorphic planes (in Russian), Dokl. Akad. Nauk SSSR, 273 (1983), 280-284.
  • [17] Koufogiorgos, Th.and Tsichlias, C., On the existence of a new class of contact metric mani- folds, Canad. Math. Bull., 43 (2000), 440-447.
  • [18] Libermann M. P., Sur les automorphismes infinitesimaux des structures symplectiques et des structures de contact, in: Colloque de Geometrie Differentielle Globale (Bruxelles, 1958), Centre Belge de Recherche Mathematiques Louvain, (1959), 37-59.
  • [19] Lichnerowicz A., Theoremes de reductivite sur des algebres d’automorphismes, Rend. Mat., 22 (1963), 197-244.
  • [20] Mikes, J., On Sasaki spaces and equidistant K¨ahler space, Sovlet. Math Dokl,Vo .34 (1987), No. 3, 428-431.
  • [21] Mikes, J., Equidistant K¨ahler spaces, Mathematical notes of the Academy of Sciences of the USSR, October 1985, Vol. 38, No. 4, 855-858.
  • [22] Olszak Z., Locally conformal almost cosymplectic manifolds, Coll. Math., 57 (1989), 73–87.
  • [23] Olszak Z., On almost cosymplectic manifolds, Kodai Math. J., 4 (1981), 239-250.
  • [24] Olszak Z., Almost cosymplectic manifolds with K¨ahlerian leaves, Tensor N. S., 46 (1987), 117-124.
  • [25] Özgür C., Contact metric manifold with cyclic -parallel Ricci tensor, Balkan Society of Ge- ometers, Geometry Balkan Press., 4 (2002), no.1, 21-25.
  • [26] Öztürk H., Aktan N. and Murathan C., Almost α-cosymplectic (κ, µ, ν)-spaces, arXiv:1007.0527v1.
  • [27] Lee, Sung-Baik, Kim, Nam-Gil, Hand, Seung-Gook and Ahn, Seong-Soo, Sasakian manifolds with cyclic-parallel Ricci tensor, Bull. Korean Math. Soc., 33 (1996), no. 2, 243-251.

ALMOST COSYMPLECTIC (κ, µ)-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR

Year 2013, Volume: 6 Issue: 2, 57 - 62, 30.10.2013

Abstract



References

  • [1] Alfonso, C. and Verónica M., The curvature tensor of almost cosymplectic and almost Ken- motsu (κ, µ, ν)-spaces. arXiv:1201.5565v2.
  • [2] Blair D., Kouforgiorgos T. and Papantoniou B. J., Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91 (1995), 189-214.
  • [3] Blair D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathe- matics, 203. Birkhâuser Boston, Inc., Boston, MA, 2002.
  • [4] Blair D. E. and Goldberg S. I., Topology of almost contact manifolds, J. Differential geometry, 1(1967), 347-354.
  • [5] Blair D. E., The theory of quasi-Sasakian structures, J. Diff. Geometry, 1 (1967), 331-345.
  • [6] Blair D. E., Goldberg S. I., Topology of almost contact manifolds, J. Diff. Geometry, 1 (1967),347-354.
  • [7] Boeckx, E., A full classification of contact metric (κ, µ)-spaces, Illinois J. Math., 44 (1) (2000), 212-219.
  • [8] Chinea D., De Leon M., Marrero J. C., Topology of cosymplectic manifolds, J. Math. Pures Appl., 72 (1993), 567-591.
  • [9] Chinea D., De Leon M., Marrero J. C., Coeffective cohomology on almost cosymplectic manifolds, Bull. Sci. Math., 119 (1995), 3-20.
  • [10] Chinea D. and Gonzalez C., An example of almost cosymplectic homogeneous manifold, in: Lect. Notes Math. Vol. 1209, Springer-Verlag, Berlin-Heildelberg-New York, (1986), 133-142.
  • [11] Cordero L. A., Fernandez M. and De Leon M., Examples of compact almost contact manifolds admitting neither Sasakian nor cosymplectic structures, Atti Sem. Mat. Univ. Modena, 34 (1985-86), 43-54.
  • [12] Endo H., On Ricci curvatures of almost cosymplectic manifolds, An. S¸tiint. Univ. ”Al. I. Cuza” Ia¸si, Mat., 40 (1994), 75-83.
  • [13] Fujimoto A. and Muto H., On cosymplectic manifolds, Tensor N. S., 28 (1974), 43-52.
  • [14] Goldberg S.I. and Yano K. Integrability of almost cosymplectic structures, Pasific J. Math., 31 (1969), 373-382.
  • [15] Kim, T. W. and Pak, H. K , Canonical foliations of certain classes of almost contact metric structures, Acta Math. 21 (2005), no. 4, 841–846.
  • [16] Kirichenko V. F., Almost cosymplectic manifolds satisfying the axiom of Φ-holomorphic planes (in Russian), Dokl. Akad. Nauk SSSR, 273 (1983), 280-284.
  • [17] Koufogiorgos, Th.and Tsichlias, C., On the existence of a new class of contact metric mani- folds, Canad. Math. Bull., 43 (2000), 440-447.
  • [18] Libermann M. P., Sur les automorphismes infinitesimaux des structures symplectiques et des structures de contact, in: Colloque de Geometrie Differentielle Globale (Bruxelles, 1958), Centre Belge de Recherche Mathematiques Louvain, (1959), 37-59.
  • [19] Lichnerowicz A., Theoremes de reductivite sur des algebres d’automorphismes, Rend. Mat., 22 (1963), 197-244.
  • [20] Mikes, J., On Sasaki spaces and equidistant K¨ahler space, Sovlet. Math Dokl,Vo .34 (1987), No. 3, 428-431.
  • [21] Mikes, J., Equidistant K¨ahler spaces, Mathematical notes of the Academy of Sciences of the USSR, October 1985, Vol. 38, No. 4, 855-858.
  • [22] Olszak Z., Locally conformal almost cosymplectic manifolds, Coll. Math., 57 (1989), 73–87.
  • [23] Olszak Z., On almost cosymplectic manifolds, Kodai Math. J., 4 (1981), 239-250.
  • [24] Olszak Z., Almost cosymplectic manifolds with K¨ahlerian leaves, Tensor N. S., 46 (1987), 117-124.
  • [25] Özgür C., Contact metric manifold with cyclic -parallel Ricci tensor, Balkan Society of Ge- ometers, Geometry Balkan Press., 4 (2002), no.1, 21-25.
  • [26] Öztürk H., Aktan N. and Murathan C., Almost α-cosymplectic (κ, µ, ν)-spaces, arXiv:1007.0527v1.
  • [27] Lee, Sung-Baik, Kim, Nam-Gil, Hand, Seung-Gook and Ahn, Seong-Soo, Sasakian manifolds with cyclic-parallel Ricci tensor, Bull. Korean Math. Soc., 33 (1996), no. 2, 243-251.
There are 27 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Nesip Aktan

Yavuz Selim Balkan

Publication Date October 30, 2013
Published in Issue Year 2013 Volume: 6 Issue: 2

Cite

APA Aktan, N., & Balkan, Y. S. (2013). ALMOST COSYMPLECTIC (κ, µ)-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR. International Electronic Journal of Geometry, 6(2), 57-62.
AMA Aktan N, Balkan YS. ALMOST COSYMPLECTIC (κ, µ)-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR. Int. Electron. J. Geom. October 2013;6(2):57-62.
Chicago Aktan, Nesip, and Yavuz Selim Balkan. “ALMOST COSYMPLECTIC (κ, )-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR”. International Electronic Journal of Geometry 6, no. 2 (October 2013): 57-62.
EndNote Aktan N, Balkan YS (October 1, 2013) ALMOST COSYMPLECTIC (κ, µ)-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR. International Electronic Journal of Geometry 6 2 57–62.
IEEE N. Aktan and Y. S. Balkan, “ALMOST COSYMPLECTIC (κ, µ)-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR”, Int. Electron. J. Geom., vol. 6, no. 2, pp. 57–62, 2013.
ISNAD Aktan, Nesip - Balkan, Yavuz Selim. “ALMOST COSYMPLECTIC (κ, )-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR”. International Electronic Journal of Geometry 6/2 (October 2013), 57-62.
JAMA Aktan N, Balkan YS. ALMOST COSYMPLECTIC (κ, µ)-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR. Int. Electron. J. Geom. 2013;6:57–62.
MLA Aktan, Nesip and Yavuz Selim Balkan. “ALMOST COSYMPLECTIC (κ, )-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR”. International Electronic Journal of Geometry, vol. 6, no. 2, 2013, pp. 57-62.
Vancouver Aktan N, Balkan YS. ALMOST COSYMPLECTIC (κ, µ)-SPACES WITH CYCLIC-PARALLEL RICCI TENSOR. Int. Electron. J. Geom. 2013;6(2):57-62.