Research Article
BibTex RIS Cite
Year 2011, Volume: 4 Issue: 1, 32 - 47, 30.04.2011

Abstract

References

  • [1] Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathe- matics, 203 (Boston, MA: Birkhauser Boston, Inc.) (2002).
  • [2] Boothby, W. M. and Wang, H. C., On contact manifolds, Ann. Math., 68 (1958), 721–734.
  • [3] Cabrerizo, J. L., Ferna´ndez, L. M., Ferna´ndez, M. and Zhen, G., The structure of a class of K-contact manifolds, Acta Math. Hungar., 82 (1999), no. 4, 331–340.
  • [4] Dwivedi, M. K. and Kim, J.-S., On conharmonic curvature tensor in K-contact and Sasakian manifolds, Bull. Malays. Math. Sci. Soc. 34(1) (2011), 171-180.
  • [5] Eisenhart, L. P., Riemannian Geometry, Princeton University Press, 1949. [6] Ishii, Y., On conharmonic transformations, Tensor (N.S.), 7 (1957), 73–80.
  • [7] Ogiue, K., On fibrings of almost contact manifolds, Kodai Math. Sem. Rep., 17 (1965) 53–62.
  • [8] Pokhariyal G. P. and Mishra, R. S., Curvature tensors and their relativistic significance, Yokohama Math. J., 18 (1970), 105–108.
  • [9] Pokhariyal, G. P. and Mishra, R. S., Curvature tensors and their relativistic significance II, Yokohama Math. J., 19 (1971), no. 2, 97–103.
  • [10] Pokhariyal, G. P., Relativistic significance of curvature tensors, Internat. J. Math. Math. Sci., 5 (1982), no. 1, 133–139.
  • [11] Prasad, B., A pseudo projective curvature tensor on a Riemannian manifold, Bull. Calcutta Math. Soc., 94 (2002), no. 3, 163–166.
  • [12] Tripathi, M. M. and Dwivedi, M. K., The structure of some classes of K-contact manifolds, Proc. Indian Acad. Sci. (Math. Sci.), 118 (2008), no. 3, 371–379.
  • [13] Tripathi, M. M. and Gupta, P., T -curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Stud. 4 (2011), No. 1, 117-129.
  • [14] Yano, K., Concircular Geometry I. Concircular transformations, Math. Institute, Tokyo Im- perial Univ. Proc., 16 (1940), 195–200.
  • [15] Yano, K. and Bochner, S., Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, 1953.
  • [16] Yano, K. and Sawaki, S., Riemannian manifolds admitting a conformal transformation group, J. Diff. Geom., 2 (1968), 161–184.
  • [17] Zhen, G., Cabrerizo, J. L., Ferna´ndez, L. M. and Fern´andez, M., On ξ-conformally flat contact metric manifolds, Indian J. Pure Appl. Math., 28 (1997), 725–734.
  • [18] Zhen, G., On conformal symmetric K-contact manifolds, Chinese Quart. J. Math., 7 (1992), 5–10.

On T-Curvature Tensor In K-Contact And Sasakian Manifolds

Year 2011, Volume: 4 Issue: 1, 32 - 47, 30.04.2011

Abstract


References

  • [1] Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathe- matics, 203 (Boston, MA: Birkhauser Boston, Inc.) (2002).
  • [2] Boothby, W. M. and Wang, H. C., On contact manifolds, Ann. Math., 68 (1958), 721–734.
  • [3] Cabrerizo, J. L., Ferna´ndez, L. M., Ferna´ndez, M. and Zhen, G., The structure of a class of K-contact manifolds, Acta Math. Hungar., 82 (1999), no. 4, 331–340.
  • [4] Dwivedi, M. K. and Kim, J.-S., On conharmonic curvature tensor in K-contact and Sasakian manifolds, Bull. Malays. Math. Sci. Soc. 34(1) (2011), 171-180.
  • [5] Eisenhart, L. P., Riemannian Geometry, Princeton University Press, 1949. [6] Ishii, Y., On conharmonic transformations, Tensor (N.S.), 7 (1957), 73–80.
  • [7] Ogiue, K., On fibrings of almost contact manifolds, Kodai Math. Sem. Rep., 17 (1965) 53–62.
  • [8] Pokhariyal G. P. and Mishra, R. S., Curvature tensors and their relativistic significance, Yokohama Math. J., 18 (1970), 105–108.
  • [9] Pokhariyal, G. P. and Mishra, R. S., Curvature tensors and their relativistic significance II, Yokohama Math. J., 19 (1971), no. 2, 97–103.
  • [10] Pokhariyal, G. P., Relativistic significance of curvature tensors, Internat. J. Math. Math. Sci., 5 (1982), no. 1, 133–139.
  • [11] Prasad, B., A pseudo projective curvature tensor on a Riemannian manifold, Bull. Calcutta Math. Soc., 94 (2002), no. 3, 163–166.
  • [12] Tripathi, M. M. and Dwivedi, M. K., The structure of some classes of K-contact manifolds, Proc. Indian Acad. Sci. (Math. Sci.), 118 (2008), no. 3, 371–379.
  • [13] Tripathi, M. M. and Gupta, P., T -curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Stud. 4 (2011), No. 1, 117-129.
  • [14] Yano, K., Concircular Geometry I. Concircular transformations, Math. Institute, Tokyo Im- perial Univ. Proc., 16 (1940), 195–200.
  • [15] Yano, K. and Bochner, S., Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, 1953.
  • [16] Yano, K. and Sawaki, S., Riemannian manifolds admitting a conformal transformation group, J. Diff. Geom., 2 (1968), 161–184.
  • [17] Zhen, G., Cabrerizo, J. L., Ferna´ndez, L. M. and Fern´andez, M., On ξ-conformally flat contact metric manifolds, Indian J. Pure Appl. Math., 28 (1997), 725–734.
  • [18] Zhen, G., On conformal symmetric K-contact manifolds, Chinese Quart. J. Math., 7 (1992), 5–10.
There are 17 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Mukut Mani Tripathi

Punam Gupta This is me

Publication Date April 30, 2011
Published in Issue Year 2011 Volume: 4 Issue: 1

Cite

APA Mani Tripathi, M., & Gupta, P. (2011). On T-Curvature Tensor In K-Contact And Sasakian Manifolds. International Electronic Journal of Geometry, 4(1), 32-47.
AMA Mani Tripathi M, Gupta P. On T-Curvature Tensor In K-Contact And Sasakian Manifolds. Int. Electron. J. Geom. April 2011;4(1):32-47.
Chicago Mani Tripathi, Mukut, and Punam Gupta. “On T-Curvature Tensor In K-Contact And Sasakian Manifolds”. International Electronic Journal of Geometry 4, no. 1 (April 2011): 32-47.
EndNote Mani Tripathi M, Gupta P (April 1, 2011) On T-Curvature Tensor In K-Contact And Sasakian Manifolds. International Electronic Journal of Geometry 4 1 32–47.
IEEE M. Mani Tripathi and P. Gupta, “On T-Curvature Tensor In K-Contact And Sasakian Manifolds”, Int. Electron. J. Geom., vol. 4, no. 1, pp. 32–47, 2011.
ISNAD Mani Tripathi, Mukut - Gupta, Punam. “On T-Curvature Tensor In K-Contact And Sasakian Manifolds”. International Electronic Journal of Geometry 4/1 (April 2011), 32-47.
JAMA Mani Tripathi M, Gupta P. On T-Curvature Tensor In K-Contact And Sasakian Manifolds. Int. Electron. J. Geom. 2011;4:32–47.
MLA Mani Tripathi, Mukut and Punam Gupta. “On T-Curvature Tensor In K-Contact And Sasakian Manifolds”. International Electronic Journal of Geometry, vol. 4, no. 1, 2011, pp. 32-47.
Vancouver Mani Tripathi M, Gupta P. On T-Curvature Tensor In K-Contact And Sasakian Manifolds. Int. Electron. J. Geom. 2011;4(1):32-47.