[1] Chen, B.-Y., Geometry of submanifolds and its applications, (Science University of Tokyo, Tokyo, Japan 1981).
[2] Chen, B.-Y., Interaction of Legendre curves and Lagrangian submanifolds, Israel J. Math. 99 (1997), 69–108.
[3] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku Math. J. 49 (1997), 277–297.
[4] Chen, B.-Y., Representation of flat Lagrangian H-umbilical submanifolds in complex Euclidean spaces, Tohoku Math. J. 51 (1999), 13–20.
[5] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in indefinite complex Euclidean spaces, Bulletin Math. Inst. AcademiaSinica 31 (2003), 151-179.
[6] Chen, B.-Y., Pseudo-Riemannian geometry, -invariants and applications, (World Scientific Publications, Hackensack, New Jersey, 2011).
[7] Chen, B.-Y., A construction method of Lagrangian surfaces in complex pseudo Euclidean plane C21 and its applications, Int. Electron. J. Geom. 7 (2014), 4-25.
[8] Chen, B.-Y. and Fastenakels, J., Classification of flat Lagrangianl surfaces in complex Lorentzian plane, Acta Mathematica Sinica, 23, No.12(2007), 2111-2144.
[9] Deng, S., Lagrangian H-umbilical surfaces in complex Lorentzian plane, Int. Electron. J. Geom. 9, No. 2 (2016), 87-93.
[10] Deng, S., Classification of Lagrangian H-umbilical surfaces of constant curvature in complex Lorentzian plane, Int. Electron. J. Geom. 10,No. 1 (2017), 48-57.
[11] B. O’Neill, Semi-Riemannian geometry with applications to relativity, (Academic Press, New York, 1983).
[12] R. Ponge and H. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geometriae Dedicata 48, (1993), 15-25.
[13] K. Yano and M. Kon, Structures on manifolds, (World Scientific Publishing Co., Singapore, 1984).
Classification of Flat Lagrangian H-umbilical Submanifolds in Indefinite Complex Euclidean spaces
Year 2019,
Volume: 12 Issue: 2, 268 - 275, 03.10.2019
[1] Chen, B.-Y., Geometry of submanifolds and its applications, (Science University of Tokyo, Tokyo, Japan 1981).
[2] Chen, B.-Y., Interaction of Legendre curves and Lagrangian submanifolds, Israel J. Math. 99 (1997), 69–108.
[3] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku Math. J. 49 (1997), 277–297.
[4] Chen, B.-Y., Representation of flat Lagrangian H-umbilical submanifolds in complex Euclidean spaces, Tohoku Math. J. 51 (1999), 13–20.
[5] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in indefinite complex Euclidean spaces, Bulletin Math. Inst. AcademiaSinica 31 (2003), 151-179.
[6] Chen, B.-Y., Pseudo-Riemannian geometry, -invariants and applications, (World Scientific Publications, Hackensack, New Jersey, 2011).
[7] Chen, B.-Y., A construction method of Lagrangian surfaces in complex pseudo Euclidean plane C21 and its applications, Int. Electron. J. Geom. 7 (2014), 4-25.
[8] Chen, B.-Y. and Fastenakels, J., Classification of flat Lagrangianl surfaces in complex Lorentzian plane, Acta Mathematica Sinica, 23, No.12(2007), 2111-2144.
[9] Deng, S., Lagrangian H-umbilical surfaces in complex Lorentzian plane, Int. Electron. J. Geom. 9, No. 2 (2016), 87-93.
[10] Deng, S., Classification of Lagrangian H-umbilical surfaces of constant curvature in complex Lorentzian plane, Int. Electron. J. Geom. 10,No. 1 (2017), 48-57.
[11] B. O’Neill, Semi-Riemannian geometry with applications to relativity, (Academic Press, New York, 1983).
[12] R. Ponge and H. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geometriae Dedicata 48, (1993), 15-25.
[13] K. Yano and M. Kon, Structures on manifolds, (World Scientific Publishing Co., Singapore, 1984).
Deng, S. (2019). Classification of Flat Lagrangian H-umbilical Submanifolds in Indefinite Complex Euclidean spaces. International Electronic Journal of Geometry, 12(2), 268-275.
AMA
Deng S. Classification of Flat Lagrangian H-umbilical Submanifolds in Indefinite Complex Euclidean spaces. Int. Electron. J. Geom. October 2019;12(2):268-275.
Chicago
Deng, Shangrong. “Classification of Flat Lagrangian H-Umbilical Submanifolds in Indefinite Complex Euclidean Spaces”. International Electronic Journal of Geometry 12, no. 2 (October 2019): 268-75.
EndNote
Deng S (October 1, 2019) Classification of Flat Lagrangian H-umbilical Submanifolds in Indefinite Complex Euclidean spaces. International Electronic Journal of Geometry 12 2 268–275.
IEEE
S. Deng, “Classification of Flat Lagrangian H-umbilical Submanifolds in Indefinite Complex Euclidean spaces”, Int. Electron. J. Geom., vol. 12, no. 2, pp. 268–275, 2019.
ISNAD
Deng, Shangrong. “Classification of Flat Lagrangian H-Umbilical Submanifolds in Indefinite Complex Euclidean Spaces”. International Electronic Journal of Geometry 12/2 (October 2019), 268-275.
JAMA
Deng S. Classification of Flat Lagrangian H-umbilical Submanifolds in Indefinite Complex Euclidean spaces. Int. Electron. J. Geom. 2019;12:268–275.
MLA
Deng, Shangrong. “Classification of Flat Lagrangian H-Umbilical Submanifolds in Indefinite Complex Euclidean Spaces”. International Electronic Journal of Geometry, vol. 12, no. 2, 2019, pp. 268-75.
Vancouver
Deng S. Classification of Flat Lagrangian H-umbilical Submanifolds in Indefinite Complex Euclidean spaces. Int. Electron. J. Geom. 2019;12(2):268-75.