Research Article
BibTex RIS Cite
Year 2019, Volume: 12 Issue: 2, 268 - 275, 03.10.2019

Abstract

References

  • [1] Chen, B.-Y., Geometry of submanifolds and its applications, (Science University of Tokyo, Tokyo, Japan 1981).
  • [2] Chen, B.-Y., Interaction of Legendre curves and Lagrangian submanifolds, Israel J. Math. 99 (1997), 69–108.
  • [3] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku Math. J. 49 (1997), 277–297.
  • [4] Chen, B.-Y., Representation of flat Lagrangian H-umbilical submanifolds in complex Euclidean spaces, Tohoku Math. J. 51 (1999), 13–20.
  • [5] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in indefinite complex Euclidean spaces, Bulletin Math. Inst. AcademiaSinica 31 (2003), 151-179.
  • [6] Chen, B.-Y., Pseudo-Riemannian geometry, -invariants and applications, (World Scientific Publications, Hackensack, New Jersey, 2011).
  • [7] Chen, B.-Y., A construction method of Lagrangian surfaces in complex pseudo Euclidean plane C21 and its applications, Int. Electron. J. Geom. 7 (2014), 4-25.
  • [8] Chen, B.-Y. and Fastenakels, J., Classification of flat Lagrangianl surfaces in complex Lorentzian plane, Acta Mathematica Sinica, 23, No.12(2007), 2111-2144.
  • [9] Deng, S., Lagrangian H-umbilical surfaces in complex Lorentzian plane, Int. Electron. J. Geom. 9, No. 2 (2016), 87-93.
  • [10] Deng, S., Classification of Lagrangian H-umbilical surfaces of constant curvature in complex Lorentzian plane, Int. Electron. J. Geom. 10,No. 1 (2017), 48-57.
  • [11] B. O’Neill, Semi-Riemannian geometry with applications to relativity, (Academic Press, New York, 1983).
  • [12] R. Ponge and H. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geometriae Dedicata 48, (1993), 15-25.
  • [13] K. Yano and M. Kon, Structures on manifolds, (World Scientific Publishing Co., Singapore, 1984).

Classification of Flat Lagrangian H-umbilical Submanifolds in Indefinite Complex Euclidean spaces

Year 2019, Volume: 12 Issue: 2, 268 - 275, 03.10.2019

Abstract

In this article, we completely characterize flat Lagrangian H-umbilical submanifolds in the
indefinite complex Euclidean spaces Cns
. Consequently, in conjunction with a result from [4],
Lagrangian H-umbilical submanifolds in the indefinite complex Euclidean n-space Cns
with n > 2
are completely classified.

References

  • [1] Chen, B.-Y., Geometry of submanifolds and its applications, (Science University of Tokyo, Tokyo, Japan 1981).
  • [2] Chen, B.-Y., Interaction of Legendre curves and Lagrangian submanifolds, Israel J. Math. 99 (1997), 69–108.
  • [3] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku Math. J. 49 (1997), 277–297.
  • [4] Chen, B.-Y., Representation of flat Lagrangian H-umbilical submanifolds in complex Euclidean spaces, Tohoku Math. J. 51 (1999), 13–20.
  • [5] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in indefinite complex Euclidean spaces, Bulletin Math. Inst. AcademiaSinica 31 (2003), 151-179.
  • [6] Chen, B.-Y., Pseudo-Riemannian geometry, -invariants and applications, (World Scientific Publications, Hackensack, New Jersey, 2011).
  • [7] Chen, B.-Y., A construction method of Lagrangian surfaces in complex pseudo Euclidean plane C21 and its applications, Int. Electron. J. Geom. 7 (2014), 4-25.
  • [8] Chen, B.-Y. and Fastenakels, J., Classification of flat Lagrangianl surfaces in complex Lorentzian plane, Acta Mathematica Sinica, 23, No.12(2007), 2111-2144.
  • [9] Deng, S., Lagrangian H-umbilical surfaces in complex Lorentzian plane, Int. Electron. J. Geom. 9, No. 2 (2016), 87-93.
  • [10] Deng, S., Classification of Lagrangian H-umbilical surfaces of constant curvature in complex Lorentzian plane, Int. Electron. J. Geom. 10,No. 1 (2017), 48-57.
  • [11] B. O’Neill, Semi-Riemannian geometry with applications to relativity, (Academic Press, New York, 1983).
  • [12] R. Ponge and H. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geometriae Dedicata 48, (1993), 15-25.
  • [13] K. Yano and M. Kon, Structures on manifolds, (World Scientific Publishing Co., Singapore, 1984).
There are 13 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Shangrong Deng 0000-0001-7129-1691

Publication Date October 3, 2019
Acceptance Date September 7, 2019
Published in Issue Year 2019 Volume: 12 Issue: 2

Cite

APA Deng, S. (2019). Classification of Flat Lagrangian H-umbilical Submanifolds in Indefinite Complex Euclidean spaces. International Electronic Journal of Geometry, 12(2), 268-275.
AMA Deng S. Classification of Flat Lagrangian H-umbilical Submanifolds in Indefinite Complex Euclidean spaces. Int. Electron. J. Geom. October 2019;12(2):268-275.
Chicago Deng, Shangrong. “Classification of Flat Lagrangian H-Umbilical Submanifolds in Indefinite Complex Euclidean Spaces”. International Electronic Journal of Geometry 12, no. 2 (October 2019): 268-75.
EndNote Deng S (October 1, 2019) Classification of Flat Lagrangian H-umbilical Submanifolds in Indefinite Complex Euclidean spaces. International Electronic Journal of Geometry 12 2 268–275.
IEEE S. Deng, “Classification of Flat Lagrangian H-umbilical Submanifolds in Indefinite Complex Euclidean spaces”, Int. Electron. J. Geom., vol. 12, no. 2, pp. 268–275, 2019.
ISNAD Deng, Shangrong. “Classification of Flat Lagrangian H-Umbilical Submanifolds in Indefinite Complex Euclidean Spaces”. International Electronic Journal of Geometry 12/2 (October 2019), 268-275.
JAMA Deng S. Classification of Flat Lagrangian H-umbilical Submanifolds in Indefinite Complex Euclidean spaces. Int. Electron. J. Geom. 2019;12:268–275.
MLA Deng, Shangrong. “Classification of Flat Lagrangian H-Umbilical Submanifolds in Indefinite Complex Euclidean Spaces”. International Electronic Journal of Geometry, vol. 12, no. 2, 2019, pp. 268-75.
Vancouver Deng S. Classification of Flat Lagrangian H-umbilical Submanifolds in Indefinite Complex Euclidean spaces. Int. Electron. J. Geom. 2019;12(2):268-75.