Research Article
BibTex RIS Cite
Year 2019, Volume: 12 Issue: 2, 210 - 217, 03.10.2019
https://doi.org/10.36890/iejg.628085

Abstract

References

  • [1] Bejan, C. L. and Crasmareanu, M., Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry. Ann. Global Anal. Geom. 46(2) (2014), 117–127.
  • [2] Blair, D. E., The theory of quasi-Sasakian structures. J. Differential Geom. 1 (1967), 331–345.
  • [3] Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics Vol. 203, Birkhäuser. Boston 2002.
  • [4] Cappelletti-Montano, B., Küpeli Erken, I. and Murathan, C., Nullity conditions in paracontact geometry. Diff. Geom. Appl. 30 (2012), 665–693.
  • [5] Dacko, P., On almost para-cosymplectic manifolds. Tsukuba J. Math. 28 (2004), 193–213.
  • [6] Erdem, S., On almost (para)contact (hyperbolic) metric manifolds and harmonicity of (φ,φ')-holomorphic maps between them. Houston J. Math. 28 (2002), 21–45.
  • [7] Kanemaki, S., Quasi-Sasakian manifolds. Tohoku Math. J. 29 (1977), 227–233.
  • [8] Kaneyuki, S. and Williams, F. L., Almost paracontact and parahodge structures on manifolds. Nagoya Math. J. 99 (1985), 173–187.
  • [9] Küpeli Erken, I., Some classes of 3-dimensional normal almost paracontact metric manifolds. Honam Math. J. 37(4) (2015), 457-468.
  • [10] Küpeli Erken, I., On normal almost paracontact metric manifolds of dimension 3. Facta Univ. Ser. Math. Inform. 30(5) (2015), 777-788.
  • [11] Olszak, Z., Curvature properties of quasi-Sasakian manifolds. Tensor. 38 (1982), 19–28.
  • [12] Olszak, Z., Normal almost contact metric manifolds of dimension three. Ann. Polon. Math. XLVII (1986), 41–50.
  • [13] Tanno, S., The topology of contact Riemannian manifolds. Illinois J. Math. 12 (1968), 700-717.
  • [14] Tanno, S., Quasi-Sasakian structures of rank 2p + 1. J. Differential Geom. 5 (1971), 317–324.
  • [15] Wełyczko, J., On basic curvature identities for almost (para)contact metric manifolds. Available in Arxiv: 1209.4731 [math. DG].
  • [16] Welyczko, J., On Legendre Curves in 3-Dimensional Normal Almost Paracontact Metric Manifolds. Result. Math. 54 (2009), 377–387.
  • [17] Zamkovoy, S., Canonical connections on paracontact manifolds. Ann. Glob. Anal. Geom. 36 (2009), 37–60.

Curvature Properties of Quasi-Para-Sasakian Manifolds

Year 2019, Volume: 12 Issue: 2, 210 - 217, 03.10.2019
https://doi.org/10.36890/iejg.628085

Abstract


References

  • [1] Bejan, C. L. and Crasmareanu, M., Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry. Ann. Global Anal. Geom. 46(2) (2014), 117–127.
  • [2] Blair, D. E., The theory of quasi-Sasakian structures. J. Differential Geom. 1 (1967), 331–345.
  • [3] Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics Vol. 203, Birkhäuser. Boston 2002.
  • [4] Cappelletti-Montano, B., Küpeli Erken, I. and Murathan, C., Nullity conditions in paracontact geometry. Diff. Geom. Appl. 30 (2012), 665–693.
  • [5] Dacko, P., On almost para-cosymplectic manifolds. Tsukuba J. Math. 28 (2004), 193–213.
  • [6] Erdem, S., On almost (para)contact (hyperbolic) metric manifolds and harmonicity of (φ,φ')-holomorphic maps between them. Houston J. Math. 28 (2002), 21–45.
  • [7] Kanemaki, S., Quasi-Sasakian manifolds. Tohoku Math. J. 29 (1977), 227–233.
  • [8] Kaneyuki, S. and Williams, F. L., Almost paracontact and parahodge structures on manifolds. Nagoya Math. J. 99 (1985), 173–187.
  • [9] Küpeli Erken, I., Some classes of 3-dimensional normal almost paracontact metric manifolds. Honam Math. J. 37(4) (2015), 457-468.
  • [10] Küpeli Erken, I., On normal almost paracontact metric manifolds of dimension 3. Facta Univ. Ser. Math. Inform. 30(5) (2015), 777-788.
  • [11] Olszak, Z., Curvature properties of quasi-Sasakian manifolds. Tensor. 38 (1982), 19–28.
  • [12] Olszak, Z., Normal almost contact metric manifolds of dimension three. Ann. Polon. Math. XLVII (1986), 41–50.
  • [13] Tanno, S., The topology of contact Riemannian manifolds. Illinois J. Math. 12 (1968), 700-717.
  • [14] Tanno, S., Quasi-Sasakian structures of rank 2p + 1. J. Differential Geom. 5 (1971), 317–324.
  • [15] Wełyczko, J., On basic curvature identities for almost (para)contact metric manifolds. Available in Arxiv: 1209.4731 [math. DG].
  • [16] Welyczko, J., On Legendre Curves in 3-Dimensional Normal Almost Paracontact Metric Manifolds. Result. Math. 54 (2009), 377–387.
  • [17] Zamkovoy, S., Canonical connections on paracontact manifolds. Ann. Glob. Anal. Geom. 36 (2009), 37–60.
There are 17 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

İ. Küpeli Erken

Publication Date October 3, 2019
Published in Issue Year 2019 Volume: 12 Issue: 2

Cite

APA Erken, İ. K. (2019). Curvature Properties of Quasi-Para-Sasakian Manifolds. International Electronic Journal of Geometry, 12(2), 210-217. https://doi.org/10.36890/iejg.628085
AMA Erken İK. Curvature Properties of Quasi-Para-Sasakian Manifolds. Int. Electron. J. Geom. October 2019;12(2):210-217. doi:10.36890/iejg.628085
Chicago Erken, İ. Küpeli. “Curvature Properties of Quasi-Para-Sasakian Manifolds”. International Electronic Journal of Geometry 12, no. 2 (October 2019): 210-17. https://doi.org/10.36890/iejg.628085.
EndNote Erken İK (October 1, 2019) Curvature Properties of Quasi-Para-Sasakian Manifolds. International Electronic Journal of Geometry 12 2 210–217.
IEEE İ. K. Erken, “Curvature Properties of Quasi-Para-Sasakian Manifolds”, Int. Electron. J. Geom., vol. 12, no. 2, pp. 210–217, 2019, doi: 10.36890/iejg.628085.
ISNAD Erken, İ. Küpeli. “Curvature Properties of Quasi-Para-Sasakian Manifolds”. International Electronic Journal of Geometry 12/2 (October 2019), 210-217. https://doi.org/10.36890/iejg.628085.
JAMA Erken İK. Curvature Properties of Quasi-Para-Sasakian Manifolds. Int. Electron. J. Geom. 2019;12:210–217.
MLA Erken, İ. Küpeli. “Curvature Properties of Quasi-Para-Sasakian Manifolds”. International Electronic Journal of Geometry, vol. 12, no. 2, 2019, pp. 210-7, doi:10.36890/iejg.628085.
Vancouver Erken İK. Curvature Properties of Quasi-Para-Sasakian Manifolds. Int. Electron. J. Geom. 2019;12(2):210-7.