Kählerian Manifold on the Product of Two Trans-Sasakian Manifolds
Year 2020,
Volume: 13 Issue: 2, 135 - 143, 15.10.2020
Bouzir Habib
,
Beldjılalı Gherici
Abstract
It's shown that for some changes of metrics and structural tensors, the product of two Trans-Sasakian manifolds is a K\"{a}hlerian manifold. This gives a new positive answer and more generally to Blair-Oubi$\tilde{n}$a's open question (see [7] and [17]). Concrete examples are given. .......................................................................
References
- [1] Alegre, P. and Carriazo, A.: Generalized Sasakian Space Forms and Conformal Changes of the Metric. Results Math. 59, 485-493 (2011).
- [2] Beldjilali, G. and Belkhelfa, M.: Kählerian structures on generalized doublyD-homothetic Bi-warping. African Diaspora Journal of Mathematics,
Vol. 21(2), 1-14 (2018).
- [3] Beldjilali, G.: Structures and D-isometric warping. HSIG, 2(1), 21-29 (2020).
- [4] Boyer, C.P., Galicki, K. and Matzeu, P.: On Eta-Einstein Sasakian Geometry. Comm.Math. Phys., 262, 177-208 (2006).
- [5] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203, Birhauser, Boston, (2002).
- [6] Blair D. E.: D-homothetic warping and appolications to geometric structures and cosmology . African Diaspora Journal of Math. 14, 134-144
(2013).
- [7] Blair, D. E. and Oubi~na, J. A.: Conformal and related changes of metric on the product of two almost contact metric manifolds. Publ. Math. 34,
199-207 (1990).
- [8] Caprusi, M.: Some remarks on the product of two almost contact manifolds. An. tiin. Univ. Al. I. Cuza Iad Sec. I a Mat . 30, 75-79 (1984).
- [9] De, U.C. and Tripathi, M. M.: Ricci Tensor in 3-dimensional Trans-Sasakian Manifolds. Kyungpook Math. J. 43, 247-255 (2003).
- [10] Marrero, J. C.: The local structure of trans-Sasakian manifolds. Annali di Matematica Pura ed Applicata , 162(1), 77-86 (1992).
- [11] Morimoto, A.: On normal almost contact metric structures. J. Math. Soc. Japan, vol. 15(4), 1963.
- [12] Olszak, Z.: Normal almost contact manifolds of dimension three. Annales Polonici Mathematici 47(1), 41-50 (1986).
- [13] Özdemir, N., Aktay, S. and Solgun, M.: On Generalized D-Conformal Deformations of Certain Almost Contact Metric Manifolds. Mathematics ,
7, 168; doi:10.3390/math7020168. (2019).
- [14] Özdemir, N., Aktay, S. and Solgun, M.: Almost Hermitian structures on the products of two almost contact metric manifolds. Differ Geom Dyn
Syst. 18, 102-109 (2016).
- [15] Oubi~na, J. A.: New classes of almost contact metric structures. Publ. Math. Debrecen, 32, 187-193 (1985).
- [16] Sharfuddin, A. and Hussain, S. I.: Almost contact structures induced by a conformal trasformation. Pub. Inst. Math. 32(46), 155-159 (1982).
- [17] Tanno, S.: The topology of contact Riemannian manifolds. Illinois J. Math. 12 , 700-717 (1968).
- [18] Watanabe, Y.: Almost Hermitian and Kähler structures on product manifolds. Proc of the Thirteenth International Workshop on Diff. Geom.,
13, 1-16 (2009).
- [19] Yano, K. and Kon, M.: Structures on Manifolds. Series in Pure Math., 3, World Sci., 1984.
Year 2020,
Volume: 13 Issue: 2, 135 - 143, 15.10.2020
Bouzir Habib
,
Beldjılalı Gherici
References
- [1] Alegre, P. and Carriazo, A.: Generalized Sasakian Space Forms and Conformal Changes of the Metric. Results Math. 59, 485-493 (2011).
- [2] Beldjilali, G. and Belkhelfa, M.: Kählerian structures on generalized doublyD-homothetic Bi-warping. African Diaspora Journal of Mathematics,
Vol. 21(2), 1-14 (2018).
- [3] Beldjilali, G.: Structures and D-isometric warping. HSIG, 2(1), 21-29 (2020).
- [4] Boyer, C.P., Galicki, K. and Matzeu, P.: On Eta-Einstein Sasakian Geometry. Comm.Math. Phys., 262, 177-208 (2006).
- [5] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203, Birhauser, Boston, (2002).
- [6] Blair D. E.: D-homothetic warping and appolications to geometric structures and cosmology . African Diaspora Journal of Math. 14, 134-144
(2013).
- [7] Blair, D. E. and Oubi~na, J. A.: Conformal and related changes of metric on the product of two almost contact metric manifolds. Publ. Math. 34,
199-207 (1990).
- [8] Caprusi, M.: Some remarks on the product of two almost contact manifolds. An. tiin. Univ. Al. I. Cuza Iad Sec. I a Mat . 30, 75-79 (1984).
- [9] De, U.C. and Tripathi, M. M.: Ricci Tensor in 3-dimensional Trans-Sasakian Manifolds. Kyungpook Math. J. 43, 247-255 (2003).
- [10] Marrero, J. C.: The local structure of trans-Sasakian manifolds. Annali di Matematica Pura ed Applicata , 162(1), 77-86 (1992).
- [11] Morimoto, A.: On normal almost contact metric structures. J. Math. Soc. Japan, vol. 15(4), 1963.
- [12] Olszak, Z.: Normal almost contact manifolds of dimension three. Annales Polonici Mathematici 47(1), 41-50 (1986).
- [13] Özdemir, N., Aktay, S. and Solgun, M.: On Generalized D-Conformal Deformations of Certain Almost Contact Metric Manifolds. Mathematics ,
7, 168; doi:10.3390/math7020168. (2019).
- [14] Özdemir, N., Aktay, S. and Solgun, M.: Almost Hermitian structures on the products of two almost contact metric manifolds. Differ Geom Dyn
Syst. 18, 102-109 (2016).
- [15] Oubi~na, J. A.: New classes of almost contact metric structures. Publ. Math. Debrecen, 32, 187-193 (1985).
- [16] Sharfuddin, A. and Hussain, S. I.: Almost contact structures induced by a conformal trasformation. Pub. Inst. Math. 32(46), 155-159 (1982).
- [17] Tanno, S.: The topology of contact Riemannian manifolds. Illinois J. Math. 12 , 700-717 (1968).
- [18] Watanabe, Y.: Almost Hermitian and Kähler structures on product manifolds. Proc of the Thirteenth International Workshop on Diff. Geom.,
13, 1-16 (2009).
- [19] Yano, K. and Kon, M.: Structures on Manifolds. Series in Pure Math., 3, World Sci., 1984.