Research Article
BibTex RIS Cite

Keller's Conjecture Revisited

Year 2022, Volume: 15 Issue: 2, 175 - 177, 31.10.2022
https://doi.org/10.36890/iejg.984269

Abstract

In 1930, Keller conjectured that every tiling of RnRn by unit cubes contains a pair of cubes sharing a complete (n1)(n−1)-dimensional face. Only 50 years later, Lagarias and Shor found a counterexample for all n10n≥10. In this note we show that neither a modification of Keller's conjecture to tiles of more complex shape is true.

References

  • Brakensiek, J., Heule, M., Mackey, J., Narvaez, D.: The Resolution of Keller's Conjecture. In: International Joint Conference on Automated Reasoning (IJCAR 2020), 48–65 (2020). https://doi.org/10.1007/978-3-030-51074-9_4
  • Debroni, J., Eblen, J. B., Langston, M. A., Myrvold, W., Shor, P., Weerapurage, D.: A complete resolution of the Keller maximum clique problem. In: Proceedings of the Twenty-Second Annual ACMSIAM Symposium on Discrete Algorithms (SODA 11), 129–135 (2011). https://doi.org/10.1137/1.9781611973082.11
  • Hajos, G.: Uber einfache und mehrfache Bedeckung des n-dimensional Raumes mit einem Wurfelgitter. Math. Zeitschr. 47, 427–467 (1942).
  • Keller, O. H.: Uber die luckenlose Einfullung des Raumes mit Wurfeln. J. Reine Angew. Math 177, 231–248 (1930).
  • Lagarias, J. F., Shor, P. W.: Keller’s cube-tiling conjecture is false in high dimensions. Bull. Amer. Math. Soc. 27, 279–283 (1992). https://doi.org/10.1090/S0273-0979-1992-00318-X
  • Lysakowska, M., Przeslawski, K.: Keller’s conjecture on the existence of columns in cube tiling of Rn. Adv. Geom. 12 (2), 329–352 (2012). https://doi.org/10.1515/advgeom.2011.055
  • Mackey, J.: Cube tiling of dimension eight with no facesharing. Discrete & Computational Geometry 28, 275–279 (2002). https://doi.org/10.1007/s00454-002-2801-9
  • Minkowski, H.: Dichtestegittenformige Lagerung kongruenter Korper. Nachrichten Ges. Wiss. Gottingen, 311–355 (1904).
  • Perron, O.: Modulartige luckenlose Ausfullung des Rn mit kongruente Wurfeln I. Math. Ann., 415–447 (1940).
Year 2022, Volume: 15 Issue: 2, 175 - 177, 31.10.2022
https://doi.org/10.36890/iejg.984269

Abstract

References

  • Brakensiek, J., Heule, M., Mackey, J., Narvaez, D.: The Resolution of Keller's Conjecture. In: International Joint Conference on Automated Reasoning (IJCAR 2020), 48–65 (2020). https://doi.org/10.1007/978-3-030-51074-9_4
  • Debroni, J., Eblen, J. B., Langston, M. A., Myrvold, W., Shor, P., Weerapurage, D.: A complete resolution of the Keller maximum clique problem. In: Proceedings of the Twenty-Second Annual ACMSIAM Symposium on Discrete Algorithms (SODA 11), 129–135 (2011). https://doi.org/10.1137/1.9781611973082.11
  • Hajos, G.: Uber einfache und mehrfache Bedeckung des n-dimensional Raumes mit einem Wurfelgitter. Math. Zeitschr. 47, 427–467 (1942).
  • Keller, O. H.: Uber die luckenlose Einfullung des Raumes mit Wurfeln. J. Reine Angew. Math 177, 231–248 (1930).
  • Lagarias, J. F., Shor, P. W.: Keller’s cube-tiling conjecture is false in high dimensions. Bull. Amer. Math. Soc. 27, 279–283 (1992). https://doi.org/10.1090/S0273-0979-1992-00318-X
  • Lysakowska, M., Przeslawski, K.: Keller’s conjecture on the existence of columns in cube tiling of Rn. Adv. Geom. 12 (2), 329–352 (2012). https://doi.org/10.1515/advgeom.2011.055
  • Mackey, J.: Cube tiling of dimension eight with no facesharing. Discrete & Computational Geometry 28, 275–279 (2002). https://doi.org/10.1007/s00454-002-2801-9
  • Minkowski, H.: Dichtestegittenformige Lagerung kongruenter Korper. Nachrichten Ges. Wiss. Gottingen, 311–355 (1904).
  • Perron, O.: Modulartige luckenlose Ausfullung des Rn mit kongruente Wurfeln I. Math. Ann., 415–447 (1940).
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Peter Horak This is me 0000-0003-4157-8813

Dongryul Kim 0000-0002-5934-8816

Early Pub Date July 23, 2022
Publication Date October 31, 2022
Acceptance Date May 20, 2022
Published in Issue Year 2022 Volume: 15 Issue: 2

Cite

APA Horak, P., & Kim, D. (2022). Keller’s Conjecture Revisited. International Electronic Journal of Geometry, 15(2), 175-177. https://doi.org/10.36890/iejg.984269
AMA Horak P, Kim D. Keller’s Conjecture Revisited. Int. Electron. J. Geom. October 2022;15(2):175-177. doi:10.36890/iejg.984269
Chicago Horak, Peter, and Dongryul Kim. “Keller’s Conjecture Revisited”. International Electronic Journal of Geometry 15, no. 2 (October 2022): 175-77. https://doi.org/10.36890/iejg.984269.
EndNote Horak P, Kim D (October 1, 2022) Keller’s Conjecture Revisited. International Electronic Journal of Geometry 15 2 175–177.
IEEE P. Horak and D. Kim, “Keller’s Conjecture Revisited”, Int. Electron. J. Geom., vol. 15, no. 2, pp. 175–177, 2022, doi: 10.36890/iejg.984269.
ISNAD Horak, Peter - Kim, Dongryul. “Keller’s Conjecture Revisited”. International Electronic Journal of Geometry 15/2 (October 2022), 175-177. https://doi.org/10.36890/iejg.984269.
JAMA Horak P, Kim D. Keller’s Conjecture Revisited. Int. Electron. J. Geom. 2022;15:175–177.
MLA Horak, Peter and Dongryul Kim. “Keller’s Conjecture Revisited”. International Electronic Journal of Geometry, vol. 15, no. 2, 2022, pp. 175-7, doi:10.36890/iejg.984269.
Vancouver Horak P, Kim D. Keller’s Conjecture Revisited. Int. Electron. J. Geom. 2022;15(2):175-7.