Research Article
BibTex RIS Cite
Year 2023, Volume: 16 Issue: 1, 208 - 214, 30.04.2023
https://doi.org/10.36890/iejg.1223973

Abstract

References

  • [1] Arnold V.I., Klesin B.A.: Topological methods in hydrodynamics, Springer-Verlag, New York (1998).
  • [2] Barros A., Gomes J.N., Rebeiro E.: A note on rigidity of almost Ricci soliton. Archiv der Mathematik, 100, 481–490 (2013).
  • [3] Barros A., Batista R., Ribeiro jr. E.: Compact almost Ricci solitons with constant scalar curvature are gradient. Monatshefte für Mathematik, 174, 29–39 (2014).
  • [4] Berard P.H.: From vanishing theorems to estimating theorems: the Bochner technique revisited. Bulletin of the American Mathematical Society, 19 (2), 371–406 (1988).
  • [5] Besse A.L.: Einstein manifolds, Springer-Verlag, Berlin and Heidelberg (2008).
  • [6] Caminha, A.: The geometry of closed conformal Killing vector fields on Riemannian spaces. Bull. Braz. Math. Soc. (N.S.), 41 (2), 277–300 (2011).
  • [7] Chow B., Lu P., Ni L.: Hamilton’s Ricci flow, in Grad. Stud. in Math., 77, AMS, Providence, RI (2006).
  • [8] Deshmukh S.: Almost Ricci solitons isometric to spheres. Int. J. of Geom. Methods in Modern Physics. 16 (5) 1950073 (2019).
  • [9] Duggal K.L., Almost Ricci Solitons and Physical Applications. Int. Electronic J. of Geometry, 10 (2), 1–10 (2017).
  • [10] Kar D., Majhi P.: Beta-almost Ricci solitons on almost co-Kähler manifolds. Korean J. Math., 27 (3), 691–705 (2019).
  • [11] Kobayashi S., Nomizu K.: Foundations of differential geometry. Vol. I. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York (1993).
  • [12] Morgan J., Tian G.: Ricci flow and Poincare conjecture, Clay Mathematics Monographs, 3. AMS, Providence, RI; Clay Mathematics Institute, Cambridge, MA (2007).
  • [13] O’Neil B.: Semi-Riemannian geometry with applications to relativity, Academic Press, London (1983).
  • [14] Patra D.S., Rovenski V.: Almost η-Ricci solitons on Kenmotsu manifolds. European J. Math., 7, 1753–1766 (2021).
  • [15] Pigola S., Rigoli M., Rimoldi M., Setti A. G., Ricci almost solitons. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (4), 757–799 (2011).
  • [16] Stepanov S.E., Shandra I.G.: Geometry of infinitesimal harmonic transformations. Annals of Global Analysis and Geometry, 24, 291–299 (2003).
  • [17] Stepanov S. E., Shelepova V. N.: A note on Ricci solitons. Mathematical Notes, 86 : 3, 447–450 (2009).
  • [18] Stepanov S.E., Tsyganok I.I., Mikeš J.: From infinitesimal harmonic transformations to Ricci solitons. Mathematica Bohemica, 138 (1), 25–36 (2013).
  • [19] Udriste C.: Geometric dynamics, Kluwer Academic Publishers, Dordrecht (2002).
  • [20] Yano K.: Integral formulas in Riemannian geometry, Marcel Dekker, New York (1970).
  • [21] Yau, S.-T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J., 25, 659–670 (1976).

Back to Almost Ricci Solitons

Year 2023, Volume: 16 Issue: 1, 208 - 214, 30.04.2023
https://doi.org/10.36890/iejg.1223973

Abstract

In the paper, we study complete almost Ricci solitons using the concepts and methods of geometric dynamics and geometric analysis. In particular, we characterize Einstein manifolds in the class of complete almost Ricci solitons.
Then, we examine compact almost Ricci solitons using the orthogonal expansion of the Ricci tensor, this allows us to substantiate the concept of almost Ricci solitons.

References

  • [1] Arnold V.I., Klesin B.A.: Topological methods in hydrodynamics, Springer-Verlag, New York (1998).
  • [2] Barros A., Gomes J.N., Rebeiro E.: A note on rigidity of almost Ricci soliton. Archiv der Mathematik, 100, 481–490 (2013).
  • [3] Barros A., Batista R., Ribeiro jr. E.: Compact almost Ricci solitons with constant scalar curvature are gradient. Monatshefte für Mathematik, 174, 29–39 (2014).
  • [4] Berard P.H.: From vanishing theorems to estimating theorems: the Bochner technique revisited. Bulletin of the American Mathematical Society, 19 (2), 371–406 (1988).
  • [5] Besse A.L.: Einstein manifolds, Springer-Verlag, Berlin and Heidelberg (2008).
  • [6] Caminha, A.: The geometry of closed conformal Killing vector fields on Riemannian spaces. Bull. Braz. Math. Soc. (N.S.), 41 (2), 277–300 (2011).
  • [7] Chow B., Lu P., Ni L.: Hamilton’s Ricci flow, in Grad. Stud. in Math., 77, AMS, Providence, RI (2006).
  • [8] Deshmukh S.: Almost Ricci solitons isometric to spheres. Int. J. of Geom. Methods in Modern Physics. 16 (5) 1950073 (2019).
  • [9] Duggal K.L., Almost Ricci Solitons and Physical Applications. Int. Electronic J. of Geometry, 10 (2), 1–10 (2017).
  • [10] Kar D., Majhi P.: Beta-almost Ricci solitons on almost co-Kähler manifolds. Korean J. Math., 27 (3), 691–705 (2019).
  • [11] Kobayashi S., Nomizu K.: Foundations of differential geometry. Vol. I. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York (1993).
  • [12] Morgan J., Tian G.: Ricci flow and Poincare conjecture, Clay Mathematics Monographs, 3. AMS, Providence, RI; Clay Mathematics Institute, Cambridge, MA (2007).
  • [13] O’Neil B.: Semi-Riemannian geometry with applications to relativity, Academic Press, London (1983).
  • [14] Patra D.S., Rovenski V.: Almost η-Ricci solitons on Kenmotsu manifolds. European J. Math., 7, 1753–1766 (2021).
  • [15] Pigola S., Rigoli M., Rimoldi M., Setti A. G., Ricci almost solitons. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (4), 757–799 (2011).
  • [16] Stepanov S.E., Shandra I.G.: Geometry of infinitesimal harmonic transformations. Annals of Global Analysis and Geometry, 24, 291–299 (2003).
  • [17] Stepanov S. E., Shelepova V. N.: A note on Ricci solitons. Mathematical Notes, 86 : 3, 447–450 (2009).
  • [18] Stepanov S.E., Tsyganok I.I., Mikeš J.: From infinitesimal harmonic transformations to Ricci solitons. Mathematica Bohemica, 138 (1), 25–36 (2013).
  • [19] Udriste C.: Geometric dynamics, Kluwer Academic Publishers, Dordrecht (2002).
  • [20] Yano K.: Integral formulas in Riemannian geometry, Marcel Dekker, New York (1970).
  • [21] Yau, S.-T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J., 25, 659–670 (1976).
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Vladimir Rovenski 0000-0003-0591-8307

Sergey Stepanov 0000-0003-1734-8874

Irina Tsyganok 0000-0001-9186-3992

Publication Date April 30, 2023
Acceptance Date March 14, 2023
Published in Issue Year 2023 Volume: 16 Issue: 1

Cite

APA Rovenski, V., Stepanov, S., & Tsyganok, I. (2023). Back to Almost Ricci Solitons. International Electronic Journal of Geometry, 16(1), 208-214. https://doi.org/10.36890/iejg.1223973
AMA Rovenski V, Stepanov S, Tsyganok I. Back to Almost Ricci Solitons. Int. Electron. J. Geom. April 2023;16(1):208-214. doi:10.36890/iejg.1223973
Chicago Rovenski, Vladimir, Sergey Stepanov, and Irina Tsyganok. “Back to Almost Ricci Solitons”. International Electronic Journal of Geometry 16, no. 1 (April 2023): 208-14. https://doi.org/10.36890/iejg.1223973.
EndNote Rovenski V, Stepanov S, Tsyganok I (April 1, 2023) Back to Almost Ricci Solitons. International Electronic Journal of Geometry 16 1 208–214.
IEEE V. Rovenski, S. Stepanov, and I. Tsyganok, “Back to Almost Ricci Solitons”, Int. Electron. J. Geom., vol. 16, no. 1, pp. 208–214, 2023, doi: 10.36890/iejg.1223973.
ISNAD Rovenski, Vladimir et al. “Back to Almost Ricci Solitons”. International Electronic Journal of Geometry 16/1 (April 2023), 208-214. https://doi.org/10.36890/iejg.1223973.
JAMA Rovenski V, Stepanov S, Tsyganok I. Back to Almost Ricci Solitons. Int. Electron. J. Geom. 2023;16:208–214.
MLA Rovenski, Vladimir et al. “Back to Almost Ricci Solitons”. International Electronic Journal of Geometry, vol. 16, no. 1, 2023, pp. 208-14, doi:10.36890/iejg.1223973.
Vancouver Rovenski V, Stepanov S, Tsyganok I. Back to Almost Ricci Solitons. Int. Electron. J. Geom. 2023;16(1):208-14.