Research Article
BibTex RIS Cite

Weierstrass Representation of Lightlike Surfaces in Lorentz-Minkowski 4-Space

Year 2023, Volume: 16 Issue: 1, 232 - 243, 30.04.2023
https://doi.org/10.36890/iejg.1272924

Abstract

We present a Weierstrass-type representation formula which locally represents every regular two-dimensional lightlike surface in Lorentz-Minkowski 4-Space $\mathbb{M}^4$ by three dual functions $(\rho,f,g)$ and generalizes the representation for regular lightlike surfaces in $\mathbb{M}^3$. We give necessary and sufficient conditions on the functions $\rho$, $f$, $g$ for the surface to be minimal, ruled or $l$-minimal. For ruled lightlike surfaces, we give necessary and sufficient conditions for the representation itself to be ruled. Furthermore, we give a result on totally geodesic half-lightlike surfaces which holds only in $\mathbb{M}^4$.

References

  • [1] Bejancu, A., Ferrandez, A., Lucas, P.: A new viewpoint on geometry of a lightlike hypersurface in semi-Euclidean space. Saitama Math. J. 16, 31-38 (1998).
  • [1] Bejancu, A., Ferrandez, A., Lucas, P.: A new viewpoint on geometry of a lightlike hypersurface in semi-Euclidean space. Saitama Math. J. 16, 31-38 (1998).
  • [2] Devald, D.: Weierstrass Representation for Timelike Surfaces in Minkowski 4-Space. J. Geom. 113 (2021). https://doi.org/10.1007/s00022-021- 00587-2
  • [2] Devald, D.: Weierstrass Representation for Timelike Surfaces in Minkowski 4-Space. J. Geom. 113 (2021). https://doi.org/10.1007/s00022-021- 00587-2
  • [3] Devald, D., Milin Šipuš, Ž.: Weierstrass Representation for Lightlike Surfaces in Lorentz-Minkowski 3-Space. J. Geom. Phys. 166 (2021). https://doi.org/10.1007/s00022-021-00587-2
  • [3] Devald, D., Milin Šipuš, Ž.: Weierstrass Representation for Lightlike Surfaces in Lorentz-Minkowski 3-Space. J. Geom. Phys. 166 (2021). https://doi.org/10.1007/s00022-021-00587-2
  • [4] do Carmo, M. P.: Differential Geometry of Curves and Surfaces. Prentice-Hall Inc., (1976).
  • [4] do Carmo, M. P.: Differential Geometry of Curves and Surfaces. Prentice-Hall Inc., (1976).
  • [5] Duggal, K. L., Bejancu, A.: Lightlike Submanifolds of semi-Riemannian Manifolds and Applications. Kluwer Academic Publishers, (1996).
  • [5] Duggal, K. L., Bejancu, A.: Lightlike Submanifolds of semi-Riemannian Manifolds and Applications. Kluwer Academic Publishers, (1996).
  • [6] Duggal, K. L., ¸Sahin, B.: Differential geometry of lightlike submanifolds. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2010).
  • [6] Duggal, K. L., ¸Sahin, B.: Differential geometry of lightlike submanifolds. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2010).
  • [7] Gorkaviy, V.: On Minimal Lightlike Surfaces in Minkowski Space-time. Differ. Geom. Appl. 26, 133-139 (2008). https://doi.org/10.1016/j.difgeo.2007.11.016
  • [7] Gorkaviy, V.: On Minimal Lightlike Surfaces in Minkowski Space-time. Differ. Geom. Appl. 26, 133-139 (2008). https://doi.org/10.1016/j.difgeo.2007.11.016
  • [8] Inoguchi, J., Lee, S.: Lightlike surfaces in Minkowski 3-Space. Int. J. Geom. Methods Mod. Phys. 6, 267-283 (2009). https://doi.org/10.1142/S0219887809003552
  • [8] Inoguchi, J., Lee, S.: Lightlike surfaces in Minkowski 3-Space. Int. J. Geom. Methods Mod. Phys. 6, 267-283 (2009). https://doi.org/10.1142/S0219887809003552
  • [9] Konopelchenko B. G.: Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy. Ann. Glob. Anal. Geom. 18, 67-74 (2000). https://doi.org/10.1023/A:1006608908156
  • [9] Konopelchenko B. G.: Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy. Ann. Glob. Anal. Geom. 18, 67-74 (2000). https://doi.org/10.1023/A:1006608908156
  • [10] Konopelchenko B. G., Landolfi G.: Generalized Weierstrass representation for surfaces in multidimensional Riemann spaces. J. Geom. Phys. 29, 319-333 (1999). https://doi.org/10.1016/S0393-0440(98)00046-1
  • [10] Konopelchenko B. G., Landolfi G.: Generalized Weierstrass representation for surfaces in multidimensional Riemann spaces. J. Geom. Phys. 29, 319-333 (1999). https://doi.org/10.1016/S0393-0440(98)00046-1
  • [11] Lee, S.: Weierstrass representation for timelike minimal surfaces in Minkowski 3-Space. Commun. Math. Anal., Conf 01, 11-19 (2008).
  • [11] Lee, S.: Weierstrass representation for timelike minimal surfaces in Minkowski 3-Space. Commun. Math. Anal., Conf 01, 11-19 (2008).
  • [12] Liu, H.: Weierstrass type representation for marginally trapped surfaces in Minkowski 4-Space. Math. Phys. Anal. Geom. 16, 171-178 (2013).
  • [12] Liu, H.: Weierstrass type representation for marginally trapped surfaces in Minkowski 4-Space. Math. Phys. Anal. Geom. 16, 171-178 (2013).
  • [13] Magid, M. A.: Timelike surfaces in Lorentz 3-Space with prescribed mean curvature and Gauss map. Hokkaido Math. J. 20, 447-464 (1991).
  • [13] Magid, M. A.: Timelike surfaces in Lorentz 3-Space with prescribed mean curvature and Gauss map. Hokkaido Math. J. 20, 447-464 (1991).
  • [14] McNertney, L. V.: One-parameter Families of Surfaces With Constant Curvature in Lorentz 3-Space. Ph.D. thesis. Brown University (1980).
  • [14] McNertney, L. V.: One-parameter Families of Surfaces With Constant Curvature in Lorentz 3-Space. Ph.D. thesis. Brown University (1980).
  • [15] Messelmi, F.: Analysis of Dual Functions. Annual Review of Chaos Theory, Bifurcations and Dynamical Systems. 4, 37-54 (2013
  • [15] Messelmi, F.: Analysis of Dual Functions. Annual Review of Chaos Theory, Bifurcations and Dynamical Systems. 4, 37-54 (2013
Year 2023, Volume: 16 Issue: 1, 232 - 243, 30.04.2023
https://doi.org/10.36890/iejg.1272924

Abstract

References

  • [1] Bejancu, A., Ferrandez, A., Lucas, P.: A new viewpoint on geometry of a lightlike hypersurface in semi-Euclidean space. Saitama Math. J. 16, 31-38 (1998).
  • [1] Bejancu, A., Ferrandez, A., Lucas, P.: A new viewpoint on geometry of a lightlike hypersurface in semi-Euclidean space. Saitama Math. J. 16, 31-38 (1998).
  • [2] Devald, D.: Weierstrass Representation for Timelike Surfaces in Minkowski 4-Space. J. Geom. 113 (2021). https://doi.org/10.1007/s00022-021- 00587-2
  • [2] Devald, D.: Weierstrass Representation for Timelike Surfaces in Minkowski 4-Space. J. Geom. 113 (2021). https://doi.org/10.1007/s00022-021- 00587-2
  • [3] Devald, D., Milin Šipuš, Ž.: Weierstrass Representation for Lightlike Surfaces in Lorentz-Minkowski 3-Space. J. Geom. Phys. 166 (2021). https://doi.org/10.1007/s00022-021-00587-2
  • [3] Devald, D., Milin Šipuš, Ž.: Weierstrass Representation for Lightlike Surfaces in Lorentz-Minkowski 3-Space. J. Geom. Phys. 166 (2021). https://doi.org/10.1007/s00022-021-00587-2
  • [4] do Carmo, M. P.: Differential Geometry of Curves and Surfaces. Prentice-Hall Inc., (1976).
  • [4] do Carmo, M. P.: Differential Geometry of Curves and Surfaces. Prentice-Hall Inc., (1976).
  • [5] Duggal, K. L., Bejancu, A.: Lightlike Submanifolds of semi-Riemannian Manifolds and Applications. Kluwer Academic Publishers, (1996).
  • [5] Duggal, K. L., Bejancu, A.: Lightlike Submanifolds of semi-Riemannian Manifolds and Applications. Kluwer Academic Publishers, (1996).
  • [6] Duggal, K. L., ¸Sahin, B.: Differential geometry of lightlike submanifolds. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2010).
  • [6] Duggal, K. L., ¸Sahin, B.: Differential geometry of lightlike submanifolds. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2010).
  • [7] Gorkaviy, V.: On Minimal Lightlike Surfaces in Minkowski Space-time. Differ. Geom. Appl. 26, 133-139 (2008). https://doi.org/10.1016/j.difgeo.2007.11.016
  • [7] Gorkaviy, V.: On Minimal Lightlike Surfaces in Minkowski Space-time. Differ. Geom. Appl. 26, 133-139 (2008). https://doi.org/10.1016/j.difgeo.2007.11.016
  • [8] Inoguchi, J., Lee, S.: Lightlike surfaces in Minkowski 3-Space. Int. J. Geom. Methods Mod. Phys. 6, 267-283 (2009). https://doi.org/10.1142/S0219887809003552
  • [8] Inoguchi, J., Lee, S.: Lightlike surfaces in Minkowski 3-Space. Int. J. Geom. Methods Mod. Phys. 6, 267-283 (2009). https://doi.org/10.1142/S0219887809003552
  • [9] Konopelchenko B. G.: Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy. Ann. Glob. Anal. Geom. 18, 67-74 (2000). https://doi.org/10.1023/A:1006608908156
  • [9] Konopelchenko B. G.: Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy. Ann. Glob. Anal. Geom. 18, 67-74 (2000). https://doi.org/10.1023/A:1006608908156
  • [10] Konopelchenko B. G., Landolfi G.: Generalized Weierstrass representation for surfaces in multidimensional Riemann spaces. J. Geom. Phys. 29, 319-333 (1999). https://doi.org/10.1016/S0393-0440(98)00046-1
  • [10] Konopelchenko B. G., Landolfi G.: Generalized Weierstrass representation for surfaces in multidimensional Riemann spaces. J. Geom. Phys. 29, 319-333 (1999). https://doi.org/10.1016/S0393-0440(98)00046-1
  • [11] Lee, S.: Weierstrass representation for timelike minimal surfaces in Minkowski 3-Space. Commun. Math. Anal., Conf 01, 11-19 (2008).
  • [11] Lee, S.: Weierstrass representation for timelike minimal surfaces in Minkowski 3-Space. Commun. Math. Anal., Conf 01, 11-19 (2008).
  • [12] Liu, H.: Weierstrass type representation for marginally trapped surfaces in Minkowski 4-Space. Math. Phys. Anal. Geom. 16, 171-178 (2013).
  • [12] Liu, H.: Weierstrass type representation for marginally trapped surfaces in Minkowski 4-Space. Math. Phys. Anal. Geom. 16, 171-178 (2013).
  • [13] Magid, M. A.: Timelike surfaces in Lorentz 3-Space with prescribed mean curvature and Gauss map. Hokkaido Math. J. 20, 447-464 (1991).
  • [13] Magid, M. A.: Timelike surfaces in Lorentz 3-Space with prescribed mean curvature and Gauss map. Hokkaido Math. J. 20, 447-464 (1991).
  • [14] McNertney, L. V.: One-parameter Families of Surfaces With Constant Curvature in Lorentz 3-Space. Ph.D. thesis. Brown University (1980).
  • [14] McNertney, L. V.: One-parameter Families of Surfaces With Constant Curvature in Lorentz 3-Space. Ph.D. thesis. Brown University (1980).
  • [15] Messelmi, F.: Analysis of Dual Functions. Annual Review of Chaos Theory, Bifurcations and Dynamical Systems. 4, 37-54 (2013
  • [15] Messelmi, F.: Analysis of Dual Functions. Annual Review of Chaos Theory, Bifurcations and Dynamical Systems. 4, 37-54 (2013
There are 30 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Davor Devald 0000-0002-9437-3689

Z. Milin Sipus 0000-0002-0726-3335

Publication Date April 30, 2023
Acceptance Date April 18, 2023
Published in Issue Year 2023 Volume: 16 Issue: 1

Cite

APA Devald, D., & Milin Sipus, Z. (2023). Weierstrass Representation of Lightlike Surfaces in Lorentz-Minkowski 4-Space. International Electronic Journal of Geometry, 16(1), 232-243. https://doi.org/10.36890/iejg.1272924
AMA Devald D, Milin Sipus Z. Weierstrass Representation of Lightlike Surfaces in Lorentz-Minkowski 4-Space. Int. Electron. J. Geom. April 2023;16(1):232-243. doi:10.36890/iejg.1272924
Chicago Devald, Davor, and Z. Milin Sipus. “Weierstrass Representation of Lightlike Surfaces in Lorentz-Minkowski 4-Space”. International Electronic Journal of Geometry 16, no. 1 (April 2023): 232-43. https://doi.org/10.36890/iejg.1272924.
EndNote Devald D, Milin Sipus Z (April 1, 2023) Weierstrass Representation of Lightlike Surfaces in Lorentz-Minkowski 4-Space. International Electronic Journal of Geometry 16 1 232–243.
IEEE D. Devald and Z. Milin Sipus, “Weierstrass Representation of Lightlike Surfaces in Lorentz-Minkowski 4-Space”, Int. Electron. J. Geom., vol. 16, no. 1, pp. 232–243, 2023, doi: 10.36890/iejg.1272924.
ISNAD Devald, Davor - Milin Sipus, Z. “Weierstrass Representation of Lightlike Surfaces in Lorentz-Minkowski 4-Space”. International Electronic Journal of Geometry 16/1 (April 2023), 232-243. https://doi.org/10.36890/iejg.1272924.
JAMA Devald D, Milin Sipus Z. Weierstrass Representation of Lightlike Surfaces in Lorentz-Minkowski 4-Space. Int. Electron. J. Geom. 2023;16:232–243.
MLA Devald, Davor and Z. Milin Sipus. “Weierstrass Representation of Lightlike Surfaces in Lorentz-Minkowski 4-Space”. International Electronic Journal of Geometry, vol. 16, no. 1, 2023, pp. 232-43, doi:10.36890/iejg.1272924.
Vancouver Devald D, Milin Sipus Z. Weierstrass Representation of Lightlike Surfaces in Lorentz-Minkowski 4-Space. Int. Electron. J. Geom. 2023;16(1):232-43.